The Myelodysplastic Syndromes (MDS) are the most common hematological malignancies arising from stem/progenitor cells. MDS is characterized by ineffective hematopoiesis in one or more lineages of the bone marrow, resulting in peripheral cytopenias and the propensity to progress to either acute myeloid leukemia (AML) or bone marrow failure (BMF). The most common cytogenetic aberration associated with MDS is deletion of the long arm of chromosome 5. Many of the molecular events involved in the development of del(5q) MDS have been elucidated including haploinsufficiency of the gene encoding the ribosomal protein RPS14, responsible for the anemia observed, and haploinsufficency of the miRNAs miR-145 and miR-146a, which together target the innate immune signaling pathway, specifically, the Toll-like receptor-4 (TLR-4)signalling pathway. It has been demonstrated that overexpression of a target of miR-146a,TRAF6, in mouse bone marrow can recapitulate the phenotype of del(5q) MDS including the cytopenias and progression to BMF or AML. However, enforced expression of TIRAP, a miR-145 target gene, results in rapid BMF independent of TRAF6.

The molecular and cellular mechanisms responsible for the differential outcome of overexpression of two genes that act within the same signalling pathway remain to be fully understood. We have identified several differentially expressed cytokines, including interferon gamma (IFNγ) and interleukin-10 (IL-10), following TIRAP overexpression compared with TRAF6 overexpression. Promoter methylation analysis has shown hypermethylation of key adaptors and signal transducers that lie between TIRAP and TRAF6 in the TLR-4 signalling pathway, suggesting activation of different pathways by TIRAP and TRAF6 overexpression. Indeed, blockade of TRAF6 and MyD88 did not inhibit TIRAP induced expression of these cytokines, suggesting that IFNγ and IL-10 production occurs in a TRAF6 and MyD88 independent manner. We identified IFNγ as the critical effector cytokine responsible for TIRAP mediated marrow failure. Gene set enrichment analysis has shown an enrichment of an IFNγ signature in MDS patients with a low risk of transformation to AML compared to healthy controls. Furthermore, interferon signatures were highly enriched in MDS patients compared to patients with AML, suggesting an important role for IFNγ signaling in driving MDS progression toward marrow failure as opposed to leukemic progression.

IFNγ has been shown to inhibit components of the bone marrow niche by blocking RANK signalling in stromal cells such as osteoclast progenitors. Using coculture of TIRAP expressing bone marrow cells with the RAW264.7 monocyte cell line, a cell line that is capable of differentiation into osteoclasts, we found an inhibition in the ability of these cells to form osteoclasts compared to control. This provides the first line of evidence suggesting that immune signalling defects arising from genetic perturbations in the hematopoietic stem cell compartment can result in stem cell niche dysfunction leading to marrow failure.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution