Multiple myeloma (MM) is characterized by accumulation of post-germinal center, isotype-switched, long-living plasma cells with retained proliferation capacity within the bone marrow. MM is highly heterogeneous and remains fatal. This heterogeneity has hampered identification of a common underlying mechanism for disease establishment and the development of targeted therapy. We recently provided proof-of-principle that gene silencing associated with H3K27me3 contributes to the malignancy of MM. Here we present the first epigenomic map of MM for H3K27me3 and H3K4me3 derived by ChIP- and RNA-sequencing from freshly-isolated bone marrow plasma cells from four patients. We compile lists of targets common among the patients as well as unique to MM when compared with PBMCs. Indicating the clinical relevance of our findings, we find increased silencing of H3K27me3 targets with disease progression and in patients presenting with a poor prognosis. Bivalent genes further significantly correlated to under-expressed genes in MM and were unique to MM when compared to PBMCs. Furthermore, bivalent genes, unlike H3K27me3 targets, significantly associated with transcriptional activation upon Polycomb inhibition indicating a potential for drug targeting. Thus, we suggest that gene silencing by Polycomb plays an important role in the development of the malignant phenotype of the MM cell during tumor progression.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution