Background: Dasatinib is a 2nd generation tyrosine kinase inhibitor (TKI) used in the treatment of chronic myeloid leukemia (CML). Its kinase inhibition profile is broad and includes several kinases important in the immune cell function such as SRC kinases. Furthermore, it is known that dasatinib has immunomodulatory effects in vivo. Recently, we observed that dasatinib induces a rapid and marked mobilization of lymphocytes, which closely follows the drug plasma concentration. The phenomenon is accompanied by an increase of NK-cell cytotoxicity. In addition, we have shown that dasatinib alters T-cell responses long-term favoring Th1 type of responses. Interestingly, the dasatinib induced immune effects have been associated with better treatment responses. We now aimed to characterize the dasatinib-induced antitumor immune responses in a syngeneic murine melanoma model to address whether dasatinib-induced immunoactivation affects tumor growth.

Methods: Direct cytotoxic effect of dasatinib on B16.OVA melanoma cells in vitro was assessed with an MTS cell viability assay. T-cell cytotoxicity was assessed by preincubating splenocytes isolated from naïve and OT-I mouse spleen with 100 nM dasatinib and measured their cytotoxic capacity against B16.OVA cells.

To further evaluate the dasatinib induced antitumor immune effects in vivo, B16.OVA cells were implanted subcutaneously in C57BL/6J mice. The mice (n=6/group) were treated daily i.g. either with 30 mg/kg dasatinib or vehicle only. Blood was collected before tumor transplantation, before treatment, and on treatment days 4, 7 and 11. Tumor volumes were measured manually and specific growth rate was calculated based on the first and the last day of the treatment. In addition to white blood cell differential counts, immunophenotyping of blood and tumor homogenate was performed by flow cytometry using antibodies against CD45.1, CD3, CD4, CD8b, NK1.1, CTLA4, PD-1 and CD107. Immunohistochemical staining of CD8+ T-cells was performed from the paraffin embedded tumor samples.

Results:In vitro incubation of B16.OVA cells with dasatinib showed only a moderate unspecific cytotoxicity with the two highest concentrations of dasatinib (1- and 10 µM), whereas in K562 cells (a CML blast crisis cell line) almost complete killing was observed already with the 100nM concentration. The cell viability of B16.OVA cells was 90% with at 100 nM of dasatinib concentration (as compared to 21% of K562 cells) suggesting that there was no direct dasatinib sensitive target oncokinase in this cell line. In contrast, a significant enhancement in the cytotoxic capacity of splenocytes was observed when they were pretreated with 100nM dasatinib (60% of target cells were alive when incubated with dasatinib pretreated naïve splenocytes compared to 100% with control treated splenocytes, p=0.004).

The in vivo tumor experiments demonstrated that the tumor volumes were smaller in dasatinib group, and there was a significant decrease in the specific tumor growth rate (0.06 vs. 0.18, p=0.01) on the 11th day of treatment. Interestingly, dasatinib treated mice had increased proportion of CD8+cells in the circulation (17.9% vs. 14.4%, p=0.005) and the CD4/CD8 ratio was significantly decreased (1.39 vs. 1.52, p= 0.04). During the tumor growth the mean CTLA-4 expression on CD8+ cells in PB increased from 1.2% to 9% in the control group, whereas, in dasatinib group the increase was more modest (1.2% to 5.7%). When the tumor content was analyzed, dasatinib treated mice had significantly more tumor infiltrated CD8+ T-cells (median 17 vs. 4/counted fields, p=0.03). In dasatinib group 80% of the tumor infiltrating CD8+ cells expressed PD-1 antigen compared to <5% of PD1 positive CD8+ cells in the peripheral blood suggesting either tumor induced CD8 T-cell exhaustion or the presence of tumor-reactive effector cells. Lastly, when CD4 and CD8 cells were depleted before tumor inoculation, dasatinib was no longer able to slow down the tumor growth.

Conclusions: Dasatinib treatment slowed the tumor growth in a B16.OVA mouse model. The growth retardation was due to immunomodulatory properties of dasatinib as the drug was not directly cytotoxic and depletion of T-cells abolished the effect. Dasatinib may be a therapeutically useful immunomodulatory agent for targeting tumor-associated anergy, particularly in combination with novel checkpoint inhibitors and tumor-targeting drugs.

Disclosures

Hemminki:Oncos Therapeutics Ltd: Shareholder Other; TILT BioTherapeutics Ltd: Employment, Shareholder, Shareholder Other. Porkka:BMS and Novartis: Honoraria, Research Funding; Pfizer: Research Funding. Mustjoki:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution