Context

Acquired thrombotic thrombocytopenic purpura (TTP) results from a severe, antibody-mediated, deficiency in the von Willebrand factor-cleaving protease ADAMTS13. Rituximab is increasingly used in this indication in patients with a suboptimal response to plasma exchange. When severe acquired ADAMTS13 deficiency persists during remission, the estimated incidence rate is of 0.4/year. So far, it is still controversial whether preemptive rituximab efficiently prevents relapses in these patients.

Patients and methods

We defined two groups of patients with a history of acquired TTP who displayed a persistent severe ADAMTS13 deficiency during remission. Patients of group 1 were treated with preemptive infusions of rituximab. Patients of group 2 were managed in centers in which preemptive rituximab infusions were not the standard of care. The relapse incidence was evaluated and compared between both groups. Patients were treated according to National recommendations and enrolled from 12 French centers during a 12-year period. Patients were explored for ADAMTS13 activity and peripheral B-cell count every 3 months. Only patients with a > 12-month follow-up after rituximab administration are reported here. Median (25th - 75th percentile) was determined for all continuous variables. Wilcoxon’s test was used to compare continuous variables and the chi-square test or Fisher’s exact test to compare binary data. Relapse-free survival was compared between both groups using the Kaplan-Meier estimator with the corresponding 95% confidence interval.

Results

Forty-eight patients (20.6%) with a history of acquired TTP displayed a persistent severe ADAMTS13 deficiency on remission or experienced a subsequent severe ADAMTS13 deficiency (24 cases each) after a median follow-up of 17 months (12-29 months). Anti-ADAMTS13 antibodies concentration was 44 U/mL (24-59 U/mL). Thirty patients received preemptive infusions of rituximab (group 1), whereas 18 others had no therapeutical intervention (group 2).

In group 1, 16 patients experienced a past history of TTP with a median number of 2 (1-3) episodes, corresponding to a relapse incidence of 0.22 (0-0.57)/year. Rituximab infusions were performed 14.5 months (6.5-27.4 months) after the last TTP episode. A median number of 4 (1-4) rituximab infusions were performed. The median follow-up between the first preemptive infusion of rituximab and the last ADAMTS13 evaluation is of 36 months (24-65 months). After preemptive rituximab administration, only 3 patients experienced a clinical relapse (0 [0] episode/year), corresponding to a significant reduction in the relapse incidence (P < .01). ADAMTS13 activity was 58.5% (30.5%-86.3%). Three months after the first rituximab infusion, ADAMTS13 activity was 46% (30-68); it further increased until the 12th month, and subsequently decreased. Accordingly, B-cell lymphocytes remained undetectable until the 6th month, and progressively increased at the 9th month to reach normal values at the 18th month. Nine patients (30%) required one (5 cases), two (2 cases), three (1 case) or ten (1 case) additional courses of rituximab for a further decrease or a persistent undetectable ADAMTS13 activity, which allowed to maintain a detectable ADAMTS13 activity in all but one patients. The time between two consecutive courses of rituximab was 26 months (5-59 months). At the end of follow-up, ADAMTS13 activity remained normal in 18 patients; 10 patients had a moderate ADAMTS13 deficiency, and 2 patients had a persistently undetectable ADAMTS13 activity. In four patients (13%), rituximab alone failed to increase durably ADAMTS13 activity, which required additional immunosuppressive drugs.

In group 2, 14 patients relapsed after a 66-month follow-up (36-105 months), corresponding to a higher relapse incidence than in patients who received preemptive infusions of rituximab (0.23 [0.1-0.46] relapse/year, P<.01). Moreover, 2 patients died of TTP in group 2, whereas no fatal outcome was recorded in group 1. Relapse free survival over time was significantly longer in group 1 (Log-rank test: P = .049).

Five patients experienced adverse effects including benign infections in 2 cases.

Conclusion

Rituximab efficiently prevents TTP relapses in most patients with a persistent acquired ADAMTS13 deficiency, with acceptable side effects.

Disclosures:

Off Label Use: Rituximab Rituximab may prevent relapses in acquired thrombotic thrombocytopenic purpura.

Sign in via your Institution