Successful gene therapy of inherited blood diseases relies on transplantation and engraftment of autologous genetically engineered hematopoietic stem/progenitor cells (HSPCs) in myeloablated patients. Hematopoietic reconstitution and clinical benefit are related to cell dose, although single disease features might play a role favoring selection of relevant progenitor populations. Gene therapy trials in young pediatric patients are performed isolating CD34+ cells from bone marrow (BM), while in adults mobilized peripheral blood stem cells (PBSC) should represent the favorite target. In the context of gene therapy for thalassemia, the choice of HSPC source is crucial since intrinsic characteristics of patients (splenomegaly and thrombophilia) dictate caution in the use of G-CSF as mobilization agent and prompt investigation of new agents. Moreover, adult thalassemic patients may possibly have a decreased BM stem cell reservoir, due to the BM suppression in response to multiple transfusions.

A phase II clinical protocol exploring the use of Plerixafor as a single mobilizing agent in adult patients affected by transfusion dependent beta-thalassemia (EudraCT 2011-000973-30) started in 2012 at our hospital. Plerixafor selectively and reversibly antagonizes the binding of SDF-1 to its receptor CXCR4 with subsequent egress of HSCs to the peripheral blood. The availability of a new source of HSPCs, potentially superior in terms of CD34+ cell yield, transduction efficiency and biological features to steady-state BM, would have a significant impact on the feasibility and efficacy of gene therapy. Four subjects were enrolled and treated by subcutaneously administration of Plerixafor at the single dose of 0.24 mg/kg followed by leukoapheresis. Mobilization of CD34+ cells occurred very rapidly with a peak between 7 to 9 hrs. Three out of four patients achieved the minimal target cell dose (2 x 106 cells/kg) and no severe adverse event occurred.

To the aim of engineering Plerixafor-mobilized CD34+ cells for gene therapy, we performed a comprehensive characterization of their biological, molecular and functional properties. In vivo reconstitution potential and lympho-myeloid differentiation were tested following transplantation in NSG mice and compared to those of PBSCs mobilized by G-CSF. Percentages of engrafted human cells in NSG mice transplanted with Plerixafor -PBSCs were about 2- to 5-fold higher than those found in mice transplanted with G-CSF PBSCs. On the same line, the SRC frequency, obtained by pooled engraftment data, was significantly higher (1 SRC out of 47.875 CD34+ cells vs.1 SRC out of 141.203 CD34+ cells). The phenotypic analysis of the frequency of primitive hematopoietic sub-populations revealed that Plerixafor mobilizes preferentially HSPCs and LT-HSPCs, with a percentage of CD34+ CD38-/low CD90+ CD45RA- CD49f+ cells higher than that found in G-CSF PBSCs. This result mirrors the enhanced number of SRCs found in the CD34+ cell population mobilized by Plerixafor.

In order to further define the molecular features of HSPCs from different sources, we are studying signalling networks in response to specific cytokines by phospho-proteins analysis and gene expression by microarrays analysis. Our studies are focused on self-renewal, homing, engraftment and multilineage differentiation processes and bioinformatic analysis will reveal the molecular machinery underlying 'stemness' properties of Plerixafor mobilized cells.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution