Abstract
High-throughput sequencing (HTS) of immunoglobulin heavy chain genes (IGH) may be useful for detecting minimal residual disease (MRD) in acute lymphoblastic leukemia. We previously demonstrated the first application of high-throughput sequencing for the detection of minimal residual disease in T-cell precursor acute lymphoblastic leukemia (TPC-ALL) (Sci. Transl. Med. 4(134):134ra63. 2012). Recently, Faham and colleagues considered deep sequencing for MRD detection in B-cell precursor acute lymphoblastic leukemia (BPC-ALL) (Blood 120(26):5173-80, 2012). As this prior analysis in BPC-ALL apparently focused only on samples known to have a clonal rearrangement in IGH, the potential applicability and wide-spread utility of sequencing of IGH in unselected clinical samples for MRD has not been tested.
In the third group (HTS+positive, flow cytometry-negative), a subset of these patients, (5 of 28) had MRD detectable by HTS at a level within the expected sensitivity of flow cytometry. We hypothesized that in these cases that post-treatment MRD sequences may be present within the maturing B cell compartment that is not immunophenotypically aberrant by flow cytometry. To test this hypothesis, we analyzed eight additional post-treatment samples that were negative for MRD by flow cytometry. The mature B-cell fraction was collected by triple, flow cytometry-sorting and then sequenced by HTS for IGH rearrangements to search for the index clone defined in the corresponding, paired pre-treatment samples. Although a limited finding, diagnostic index IGH sequence was indeed identified in one of eight samples, in only the mature B-cell fraction, which is consistent with the proportion of cases with high-level MRD detected by HTS but which was missed by flow cytometry. Taken together, our results provide additional support for assessment of MRD in acute lymphoblastic leukemia by high-throughput sequencing. Our findings argue that precise quantification of the level of MRD by HTS will be important, and suggest that clonal IGH rearrangement sequences may be detected in an immunophenotypically normal population of mature B cells that may not be detected by flow cytometry.
Emerson:Adaptive Biotechnologies: Employment, Equity Ownership. Sherwood:Adaptive Biotechnologies: Employment, Equity Ownership. Kirsch:Adaptive Biotechnologies: Employment, Equity Ownership. Carlson:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties. Williamson:Adaptive Biotechnologies: Employment, Equity Ownership. Wood:Becton Dickinson and Company, NJ, USA: Research Funding. Robins:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal