CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively, regulate cell activation and proliferation of immune system. CD137L, in addition to its ability to costimulate T cells by triggering CD137 receptor, also signals back into antigen presenting cells inducing proliferation, prolonging survival and enhancing secretion of proinflammatory cytokines. The expression of CD137L and its function on multiple myeloma cells is unknown.

We identified the constitutive expression of CD137L by flow cytometry on U266, RPMI 8226, LP1, MY5 and KMS-11 of Multiple myeloma (MM) cell lines as high as 96%, 97.5%, 89%, 93% and 94%.But, CD137 expressed on the cell surface was low as 4%, 5%, 1%, 2%, 5% respectively. Now that, CD137L was expressed very strongly on MM cell lines, next, we investigated CD137L expression of MM cells from 85 BM samples of patients seen in the hematological Dept of the First Affiliated Hosp. of Soochow University between January 2012 and June 2013 and diagnosed of active multiple MM, including the patients of newly-diagnosed (n=35), relapsed (n=5) and after 2- 4 prior therapies (n=45). The BM samples were examined using antibodies against CD45RO PE-Cy7, CD138 APC-H7, CD38 FITC and CD137L PE, according to standard protocols for surface staining. Indeed, CD137L protein was expressed by a select group of CD45-CD38++CD138+cells as higher than 95%, the same, CD38 and CD138 are expressed more than 90% of the cells of CD45-CD137L+.There were 22 samples from 11 cases collected before and after treatment and this was further evidence that CD137L molecule was consistently expressed on the MM cell surface. However, CD137L expression was not or hardly detectable on normal plasma cells confirmed by CD45+CD38++CD138+ CD56- CD19+, indicating that CD137L was ectopically expressed by MM cells and probably a specific marker of MM cells.

The ectopic CD137L expression was not a mere epiphenomenon but was selected for, what function of it? We hypothesized that it would also act as a growth stimulus for B cell cancers. Then we selected U266-a MM cell line to explore the biological effect of CD137L reverse signaling and its underlying mechanism. As a result, in vitro study, U266 cells(2X105/ml))were cultured plate pre-coated with mAb 1F1 or irrelevant mouse IgG at l ug/ml in PBS and at 400 ul per well of 24-well plate or 80 ul per well of 96-well plate and washed twice after overnight incubation at 4°C. The proliferation and survival of U266 was enhanced by stimulating- CD137L mAb (1F1) than those induced by control mouse IgG by cell counting (4.2 X105/ml VS 3.3 X105/ml), WST-8(1.15 VS 0.81) and CFSE assay (930 VS 991) at incubation for 48h. In addition, the cell cycle analysis showed that CD137L induces proliferation and increases the number of cells in the S phase from 36.1% to 42.5% after 72h incubation. The percentage of apoptosis cells (Annexin V+ and PI+) was 19.6% VS 21.2% with no statistical significance.

In order to explore the mechanism of the function of CD137L on MM cells, we surveyed the cytokine profiles during the incubation of U266 cells cultured for 2 days with different stimuli with mAb 1F1 compared with the control group. Intracellular cytokine staining showed that treatment of cells with 1F1 increased the production of IL-6 from 3.8% to 63.9% by Flow cytometry. When neutralizing anti-IL-6 mAb (5 ug/ml) was added to the culture medium, the cells(2X105/ml))were cultured for 48 h in pure medium or plus 10 ng/ml Fc or CD137–Fc protein and the cell proliferation measured by WST-8 was 0.79 VS 0.80 VS 0.72.1F1-induced cell proliferation was effectively inhibited. IL-6 can promote cell proliferation and survival of MM. An increase of these cytokines might explain why CD137L expression could stimulate the proliferation of U266. Finally, the U266 cells were treated with bortezomib and the growth of cells was analyzed by WST-8 assay. It demonstrated that bortezomib could inhibit the function of 1F1 and the inhibition ratio of bortezomib was 22%, 51% and 58% at 24h, 48h and 72h.

MM is a B-cell malignancy characterized by the clonal expansion and accumulation of malignant plasma cells in the bone marrow. In our study, CD137L is not only a novel ectopic constitutive marker of MM, but also a promoting proliferation factor. This suggests the possibility that its expression on MM cells may be directly target for immunomodulatory therapy for MM.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution