Introduction

CD9 is a membrane protein, member of the tetraspanin family. Recent publications have reported the role of CD9 on engraftment of hematopoietic stem cells, and on cancer stem cell potential. The expression of CD9 has been correlated to the risk of metastases and to a poor clinical outcome in various types of cancer. Surprisingly, CD9 protein is downregulated in ETV6/RUNX1 pre-B acute lymphoblastic leukemia. The purpose of our study is to investigate the effect of CD9 expression on migration and engraftment abilities of pre-B lymphocytes.

Materials and Methods

The CD9-positive Nalm6 and REH (ETV6/RUNX1) pre-B cells were used. By lentiviral transduction of shRNA targeting mRNA, we generated Nalm6 and REH cell lines depleted in CD9 protein. Engraftment tests were performed in vivo using Nod Scid Gamma immunodeficient mice. REH and Nalm6 cells were detected in bone marrow by CD10 and respectively CD19 or HLA-DR labelling. Ability of the different cell lines to adhere on fibronectin and to migrate through double chambers system in response to CXCL12 were measured in vitro. We also investigated the presence of membrane villosities on REH and REH shCD9 cell surface by scanning electron microscopy. Finally, F-actin polymerization after CXCL12 stimulation was measured by rhodamin-phalloidin labelling.

Results

In vivo engrafments tests showed that the human cells detected in bone marrow is strongly enriched in CD9 positive cells compared to the initially injected population. This result suggests that CD9 facilitates pre-B lymphobasts homing. An in vitro analysis of adhesion on fibronectin demonstrated that cellular adhesion is dependent on membrane expression of CD9. As well, the more CD9 is expressed, the higher the migration rate in response to CXCL12 chemokine is. The analysis of membrane villosities on REH cell surface revealed that cells over expressing CD9 had longer villosity than shCD9 transducted cell lines. Moreover, F-actin labelling after CXCL12 stimulation showed an increased F-actin polymerization in CD9-positive cells and the formation of actin extensions.

Conclusion

We provide novel evidence that CD9 is a key player of pre-B lymphoblasts engraftment, adhesion and CXCL12 dependant migration. CD9 expression is related to actin remodelling. We are now investigating a potential link between CD9 and RAC1 activation in response to CXC12. Therefore, the expression level of CD9 could impact leukemic blasts abilities to spread and be responsible of relapses.

This work is supported by CNRS, University of Rennes 1, University Hospital of Rennes, la Ligue Régionale contre le Cancer (committee 22, 35 and 56) (MPA, VG, MBT), SFR Biosit UMS 3480 (VG, MBT), Association Laurette Fugain (VG) and Europe Career Integration Grant (MBT).

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution