Abstract 4297

Leukemia is one of the most life-threatening cancers today, and acute promyelogenous leukemia is a common type of leukemia. We have previously shown that lycorine, a natural alkaloid extract from Amaryllidaceae, exhibited anti-leukemia effects in vitro and in vivo. Lycorine treatment of HL-60 cell arrested cell cycle at G2/M phase and induced apoptosis. In the present study, we sought to explore the molecular mechanisms for the anti-leukemia action of lycorine. Gene chip analysis revealed that lycorine treatment of HL-60 cells induced more than 9 fold increase of p21, a cyclin-dependent kinase inhibitor, whose expression is mainly regulated by p53. Since HL-60 cells are p53 null, the above findings suggest that lycorine activates p21 expression through p53-independent pathway. To further explore the alternative pathways for the activation of p21 induced by lycorine, we examined the effect of lycorine on the expression of Rb, pRb, E2F, c-Myc and HDACs which have shown to regulate p21 expression. We show that expression of pRb (ser780) and c-Myc was down-regulated, Rb and E2F were up-regulated, while the expression of HDAC1 and HDAC3 was not changed. Together these findings suggest that lycorine exerts its anti-leukemia effect by activating p21 expression via pRb/E2F and c-Myc pathways.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution