Abstract 880

Shwachman-Diamond syndrome (SDS) is an autosomal recessively inherited disorder associated with bone marrow failure and leukemia predisposition. The majority of patients harbor biallelic mutations in the SBDS gene. The SBDS protein has been implicated in several cellular functions including ribosome biogenesis and microtubule stabilization during mitosis. We have previously found that SBDS deficiency results in multipolar spindles, centrosome amplification and aneuploidy, implicating a role for SBDS in cell division. The mechanism by which SBDS functions to ensure proper spindle assembly and DNA segregation during mitosis remains unknown. Here we present evidence that SBDS functions to promote mitotic spindle stability both by directly modifying microtubule dynamics and through a microtubule crosslinking activity. Importantly, the microtubule stabilizing effects of SBDS appear to be essential for the growth and differentiation of hematopoietic progenitor cells. Specifically, we found that SBDS deficiency resulted in shortened mitotic spindle length and decreased spindle acetylation, a marker of microtubule stability. The loss of microtubule stability in the absence of SBDS function may be due to changes in microtubule dynamics or reduction in microtubule crosslinking activity, as we found that addition of recombinant purified wild-type SBDS to polymerized microtubules in vitro increases their polymerization rate and strongly promotes microtubule bundling. Interestingly, recombinant patient-derived missense mutant SBDS proteins showed a marked decrease in their microtubule bundling ability. To assess whether spindle destabilization contributes to marrow failure, we modeled hematopoiesis in the absence of SBDS in vitro. When SBDS expression was knocked down in human CD34+ cells, proliferation, differentiation, and hematopoietic progenitor colony formation were impaired, consistent with published data on primary marrow from SDS patients. The addition of taxol at concentrations that significantly impaired hematopoiesis in control CD34+ cells resulted in stable to improved hematopoiesis in the SBDS-deficient CD34+ cells. Based on these data, we hypothesize that spindle destabilization by SBDS loss promotes genomic instability, which in turn, contributes to marrow failure and leukemia predisposition.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution