Abstract 470

MiRNA-mediated gene regulation represents a fundamental layer of post-transcriptional control of gene expression with diverse functional roles in normal development and tumorigenesis. Whereas some studies have shown that over-expression of miRNA genes may contribute to cancer development and progression, it is yet to be rigorously tested by the loss-of-function genetic approaches whether miRNA genes are required for cancer development and maintenance in mice. Here we show that mir-181a1/b1 coordinates Notch and pre-TCR signals during normal thymocyte differentiation and plays an essential role in development and onset of T-cell acute lymphoblastic leukemia (T-ALL) induced by some Notch mutations. Using gain-of-function and loss-of-function approaches, we demonstrated that mir-181a1/b1 controls Notch and pre-TCR receptor signals during the early stages of T cell development in the thymus by repressing multiple negative regulators of both pathways, including Nrarp, PTPN-22, SHP2, DUSP5, and DUSP6. These results illustrate that a single miRNA can coordinate multiple signaling pathways by modulating the timing and strength of signaling at different stages. Intriguingly, synergistic signaling between Notch and pre-TCR pathways is necessary for the development of T-ALL, and miR-181 family miRNAs are aberrantly expressed in T-ALL patients. These observations raise the possibility that mir-181a1/b1 might contribute to the onset or maintenance of T-ALL by targeting similar pathways in tumor cells as it does in normal thymic progenitor cells. In support of this notion, we found that loss of mir-181a1/b1 significantly delayed the onset and development of T-ALL induced by intracellular domain of Notch1 (ICN1) and caused a 32% increase in the median survival time from 41 days to 54 days in T-ALL mice. Importantly, we noted that loss of mir-181a1/b1 more efficiently repressed the leukemogeneic potential of cells with lower levels of ICN1 expression, suggesting that mir-181a1/b1 may be more effective in inhibiting T-ALL development induced by a Notch mutant with weaker signal strength. Indeed, we demonstrated that loss of mir-181a1b1 essentially blocked T-ALL development induced by the weaker Notch mutant and dramatically decreased mortality from 60% to 10% in these T-ALL mice. Since human Notch mutations identified in T-ALL patients generally have weaker signaling strength and lower oncogenic potential than that of ICN1, our findings indicate that mir-181a1/b1 may play an essential role in development of normal thymic progenitors and Notch-induced T-ALL and may be targeted to treat T-ALL patients harboring Notch mutations.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution