Abstract 4256

Clathrin assembly lymphoid myeloid leukemia protein (CALM, also known as PICALM) is ubiquitously expressed in mammalian cells and implicated in clathrin dependent endocytosis (CDE). The CALM gene is the target of the t(10;11)(p13;q14-21) translocation, which is rare, but recurrently observed mutation in multiple types of acute leukemia. While the resultant CALM/AF10 fusion gene could act as an oncogene in vitro and in vivo in animal models, molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. Since CDE is implicated in the regulation of growth factor/cytokine signals, we hypothesized that the CALM/AF10 fusion oncoprotein could affect normal Calm function, leading to leukemogenesis. To determine the role of CALM and CDE in normal hematopoiesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/F Mx1Cre+) Calm knockout mutants. While we didn't observe a gross defect in the heterozygous mutant (Calm+/−), homozygous deletion of the Calm gene (Calm-/-) resulted in late embryonic lethality. Total numbers of fetal liver (FL) cells were significantly reduced in Calm-/-embryos compared to that of control due to inefficient erythropoiesis. Proportions of mature erythroblasts (CD71-Ter119+) in FL were significantly reduced in the absence of the Calm gene. Furthermore, Calm deficient Megakaryocyte-Erythroid Progenitors (MEPs) gave rise to less CFU-E colonies when seeded in methyl cellulose plates, suggesting that Calm is required for terminal erythroid differentiation in a cell autonomous manner. To determine the role of Calm in adult hematopoiesis, we analyzed peripheral blood (PB), bone marrow (BM) and spleen of CalmF/F Mx1Cre+ mice after pIpC injection. CalmF/F Mx1Cre+ mice demonstrated hypochromic anemia, T-lymphocytopenia and thrombocytosis one month after pIpC injection. Levels of plasma transferrin and ferritin were intact in CalmF/F Mx1Cre+ mice, while plasma iron levels were increased, indicating that iron uptake is impaired in Calm deficient erythroblasts. We observed significant reduction of mature erythroblasts and erythrocytes in both BM and spleen with concomitant increase of immature erythroblasts (CD71+Ter119+) in CalmF/F Mx1Cre+ mice. The increased population mainly consists of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts, and Benzidine staining of PB and splenic erythroblasts revealed reduced hemoglobinization in Calm deficient erythroblasts. To examine the global changes in transcriptome of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts with or without the Calm gene, we compared mRNA expression profile by gene chip microarray analysis. Over 400 genes, including genes associated with iron metabolism and CDE pathway, were up- or down-regulated more than 1.5-fold in Calm deficient polychromatophilic erythroblasts as compared to control. Genes Set Enrichment Analysis (GSEA) revealed that multiple metabolic pathways were downregulated in Calm deficient polychromatophilic erythroblasts. Calm deficient CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts demonstrated a defect in cellular proliferation revealed by cell cycle analysis. Transferrin receptor 1 (TFR1, CD71) is highly expressed in rapidly dividing cells and erythroblasts, and uptake of iron-bound transferrin through TFR1 is the main pathway of iron intake to erythroid precursors. Since CDE is implicated in TFR1 endocytosis, we next examined surface expression levels of CD71 in Calm deficient erythroid progenitors and erythroblasts. While CD71 is normally expressed at low level in early stage of megakaryo/erythroid progenitors and highly expressed in CFU-E through polychromatophilic erythroblasts, its expression was dramatically up-regulated throughout the erythroid development in CalmF/F Mx1Cre+ mice. Up-regulation of surface CD71 expression was also evident in K562 erythroid leukemia cell lines upon ShRNA-mediated CALM knockdown. Taken together, our data indicate that CALM plays an essential role in terminal erythroid differentiation via regulating TFR1 endocytosis. Since iron is required for both erythroblast proliferation and hemoglobinization, Calm deficiency significantly impacts erythroid development at multiple levels.

Disclosures:

Naoe:Chugai Pharm. Co.: Research Funding; Zenyaku-Kogyo Co.: Research Funding; Kyowa-Kirin Co.: Research Funding; Dainippon-Sumitomo Pharm. Co.: Research Funding; Novartis Pharm. Co.: Research Funding; Janssen Pharm. Co.: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution