Abstract 3211

We have previously shown that primary human stromal cells and hTERT-transduced human stromal cells (hTERT-stromal cells) support cord blood (CB) hematopoietic stem/progenitor cells. However, it is unclear whether human stromal cells maintain the expansion of erythroid progenitor cells without losing erythroid differentiation potential for a long-term ex vivo culture. In an attempt to evaluate the efficacy of human stromal cells, erythroid induction was conducted by SCF, EPO and IGF-1, 2-week after expansion of CB CD34+ cells with or without human stromal cells. The maturation of erythroid cells were evaluated by morphological findings, transferrin receptor (TfR)/glycophorin A (GPA) expression and hemoglobin (Hb) synthesis (MCH, pg/cells). The number of BFU-E upon 2-week coculture with the hTERT-stromal cells was significantly higher than those without hTERT-stromal cells (BFU-E, 639±102 vs. 4078±1935, the initial cell number of BFU-E was 513±10). Hb concentration of erythroblasts that had been derived from coculture with stromal cells, was significantly higher than that derived from stroma-free condition 14 days after erythroid induction (MCH, 0.78±0.11 vs. 2.62±0.12; p<0.05). Moreover, cobblestone area (CA)-forming cells existed beneath stromal layer weekly produced the large number of BFU-E from 4th week to at least 8th week (the total number of BFU-E, 57246±1288)(Figure A). Notably, these BFU-Es derived from CA could simultaneously differentiate into orthophilic erythroblasts with nearly normal Hb synthesis (MHC, 24.5±6.4 pg/cell)(Figure B) and GPA expression. Furthermore, most of these erythroblasts derived from CA underwent enucleation spontaneously after further 7 days culture. Thus, using hTERT-stromal cells, the long-term ex vivo erythroid production could be attained from CB cells. These findings contribute to constructing long-term of ex vivo erythroid production system using human stromal cells.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution