Abstract 916

T cells responding to chronic infections such as HIV lose the ability to secrete cytokines or to proliferate, functions critical for control of viral replication, in a process termed exhaustion. However the molecular mechanisms of T cell exhaustion are not understood, and few therapeutic targets to reinvigorate exhausted T cells have been identified. We therefore conducted a comprehensive genomic analysis of HIV-specific CD8+ T cells to identify the mechanisms underlying defective function in T cell exhaustion. We used Affymetrix microarrays to study gene expression profiles from sorted Gag-specific tetramer+ CD8+ T cells in two cohorts of HIV-infected individuals that differed in their extent of T cell exhaustion: a) Progressors (n=24), who show chronic elevation of viral load and have defects in HIV-specific T cell cytokine secretion, proliferation and survival; and b) Controllers (n=18), who show spontaneous control of viral replication and have relatively good HIV-specific T cell function. Profiles of Gag-specific CD8+ T cells (median 21,500 cells/sample) from progressors showed marked alterations in gene expression compared with those from controllers (n=518 genes upregulated in progressors, moderated t-statistic >2.0). There was highly significant similarity at the whole-genome level between dysfunctional Gag-specific CD8+ T cells from progressors and exhausted CD8+ T cells in the mouse model of chronic LCMV infection (gene set enrichment analysis, P=4.8e−005), suggesting that T cell exhaustion is associated with an evolutionarily conserved program of gene expression. Next, we determined whether this exhausted signature was influenced by inhibitory signaling via the receptor PD-1, an inhibitory receptor known to be upregulated in expression on exhausted T cells. We developed an in vitro model of PD-1 signaling and identified a unique signature of genes upregulated by PD-1 ligation. The signature of PD-1 induced genes was highly significantly upregulated in profiles from Gag-specific CD8+ T cells in HIV progressors compared to controllers (P=5e−006), and in exhausted CD8+ T cells from the LCMV mouse model (P=2e−004). Thus the signature of T cell exhaustion in humans and mice is driven in part by the consequences of PD-1 signaling. Finally, we asked whether the genes upregulated by PD-1 in exhausted T cells directly inhibit T cell function. PD-1 ligation upregulated the transcription factor BATF in HIV-specific CD8+ T cells and in exhausted CD8+ T cells from the mouse model of LCMV infection. Enforced expression of BATF, an inhibitory member of the AP-1 family, in normal human T cells inhibited proliferation (P=0.02) and IL2 secretion (P=4.5e-05). Infection with LCMV in BATF transgenic mice resulted in marked acceleration of T cell exhaustion compared to wild-type animals, indicating that BATF represses T cell effector functions. Silencing of BATF using shRNA in primary human T cells showed that it was required for PD-1 mediated inhibition of T cell function. In summary, our results demonstrate that 1) PD-1 ligation induces a conserved transcriptional program in exhausted HIV-specific CD8+ T cells and in exhausted LCMV-specific CD8+ T cells in the mouse; 2) this transcriptional program includes the upregulation of genes such as BATF that directly inhibit T cell function. Our data suggest that BATF causes the functional defects seen in T cell exhaustion, and represents a new therapeutic target to rescue T cell function in HIV infection.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution