Abstract 497

Patients with dyskeratosis congenita (DC), a disorder of telomere maintenance, suffer premature degeneration of multiple tissues. Bone marrow failure is the principal cause of mortality, and allogeneic stem cell transplantation is limited by increased treatment-related mortality. Somatic cells can be reprogrammed using defined genetic and chemical factors, yielding “induced pluripotent stem” (iPS) cell lines which have the capacity to differentiate into any tissue. Patient-specific iPS cells therefore hold promise as therapeutic agents and disease models for human degenerative disorders like DC. A cardinal feature of iPS cells is acquisition of indefinite self-renewal capacity, and we have found that telomere length is increased in human iPS cells relative to the normal primary somatic cells from which they are derived. Here we investigated whether defects in telomerase function would limit derivation or self-renewal of iPS cells from patients with DC. We reprogrammed primary fibroblasts from patients with X-linked and autosomal dominant DC, caused by mutations in the genes encoding dyskerin and telomerase RNA component (TERC), respectively. We were able to establish multiple DC-specific iPS lines showing all hallmarks of pluripotency, including the formation of hematopoietic progenitors in vitro. Unexpectedly, DC-specific iPS cells were able to sustain continual proliferation in vitro, in contrast to the premature senescence displayed by the DC fibroblasts. Although early passage DC iPS cells had shorter telomeres than donor fibroblasts, we found that telomere length in DC iPS cells increased with continued passage in culture. To explain this finding, we discovered that steady state levels of TERC, which are critically limiting in several forms of DC, are upregulated in normal and DC iPS cells. We found that TERC upregulation is a feature of the pluripotent state, that the TERC locus is a target of pluripotency-associated transcription factors, and that transcriptional silencing accompanies a 3' deletion at the TERC locus in autosomal dominant DC. Our results demonstrate that reprogramming restores self-renewal capacity in DC cells despite genetic lesions affecting telomerase, and suggest that strategies to enhance endogenous TERC expression may be feasible and therapeutically beneficial in DC patients. The studies demonstrate the value of patient-specific iPS cells for basic and translational discovery, and further the rationale for autologous iPS based cellular therapy of genetic hematologic disorders.

Disclosures:

Daley:MPM Capital: Consultancy; Solasia: Consultancy; Epizyme: Consultancy; iPierian: Consultancy, Equity Ownership.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution