To the editor:

The early enthusiasm for allogeneic stem cell transplantation (ASCT) in patients with HIV infection was tempered by the high transplantation-related mortality and rapid progression of HIV infection after allografting, casting serious doubts about the feasibility of this curative modality in HIV+ patients with hematologic malignancies.1-3  While the development of reduced-intensity conditioning (RIC) regimens has improved the outcomes of ASCT in general, its role in the HIV+ patient population remains to be defined.

We used a uniform strategy of RIC consisting of fludarabine (30 mg/m2/day, days −7 to −3), busulfan (0.8 mg/kg/dose intravenously × 8 doses) with (n = 2) or without (n = 1) thymoglobulin in 3 HIV+ patients with advanced hematologic malignancies (Table 1). Graft-versus-host disease (GVHD) prophylaxis consisted of tacrolimus (0.03 mg/kg/day intravenously, commencing on day −2) and mini-dose methotrexate (5 mg/m2 on days +1, +3, +6, and +11). To assess donor-cell chimerism, pretransplantation peripheral blood samples were used to identify polymerase chain reaction (PCR)–short tandem repeat informative fragments for each donor/recipient pair. After transplantation, lineage-specific chimerism analysis was performed as previously described.4  Patients' HIV-RNA PCR (COBAS Ampliprep/COBAS TaqMan HIV-1 real time PCR test), CD4, and CD8 counts were determined at baseline and on days +90, +180, and +360. All investigations were approved by The Ohio State University Institutional Review Board and Clinical Scientific Review Committee, and complied with the recommendations of the Declaration of Helsinki.

Table 1

Baseline characteristics and posttransplantation course summary

Patient (UPN)
123
Pretransplantation patient characteristic    
    Age, y/sex 55/M 39/F 51/M 
    Diagnosis/remission AML/CR2 Burkitt lymphoma/CR2 Plasmablastic lymphoma/CR2 
    Duration of HIV infection, y 20 11 
    HCT-CI score/KPS 3/80 3/80 4/80 
    Stem cell donor Sibling donor Unrelated donor Unrelated donor 
    Conditioning regimen Flu/Bu Flu/Bu/ATG Flu/Bu/ATG 
    GVHD prophylaxis MTX/tacrolimus MTX/tacrolimus MTX/tacrolimus 
    HAART during transplantation Atazanavir, lamivudine, tenofovir Efavirenz, emtricitabine/tenofovir Efavirenz, emtricitabin/tenofovir 
Transplantation outcome    
    Response CR CR CR 
    Alive Yes Yes Yes 
    OS, days +802 +368 +651 
    PFS, days +802 +160 +651 
    Acute GVHD grade II 
    Chronic GVHD Extensive Limited Limited 
    Current IST None None None 
    Current KPS 100 90 100 
Posttransplantation immune reconstitution and HIV control   
    CD4 count, cells/μL    
        Baseline 457 339 189 
        Day +90 N/A 174 472 
        Day +180 450 N/A 867 
        Day +365 397 270 616 
        Beyond 1 y 549 — 675 
    CD8 count, cells/μL    
        Baseline 1039 421 656 
        Day +90 N/A 957 3781 
        Day +180 589 N/A 2138 
        Day +365 366 3532 2545 
        Beyond 1 y 650 — 2507 
    Lymphoid/myeloid chimerism, %    
        Day +30 26/100 90/100 90/100 
        Day +180 69/100 100/100 100/100 
        Day +360 100/90 100/100 100/100 
    HIV RNA viral load    
        Pretransplantation 814 copies/mL Undetectable Undetectable 
        Day +30 Undetectable Undetectable Undetectable 
        Day +90 Undetectable Undetectable Undetectable 
        Day +180 Undetectable Undetectable Undetectable 
        Day +365 Undetectable Undetectable Undetectable 
        Beyond 1 y 363 copies/mL — Undetectable 
    Other infections EBV reactivation (day +90) Candida glabrata fungemia (day +3); CMV reactivation (day +26); Klebsiella oxytoca UTI (day +31) Enterobacter agglomerans bacteremia (day +108); MRSA bacteremia, catheter-associated (day +133) 
Patient (UPN)
123
Pretransplantation patient characteristic    
    Age, y/sex 55/M 39/F 51/M 
    Diagnosis/remission AML/CR2 Burkitt lymphoma/CR2 Plasmablastic lymphoma/CR2 
    Duration of HIV infection, y 20 11 
    HCT-CI score/KPS 3/80 3/80 4/80 
    Stem cell donor Sibling donor Unrelated donor Unrelated donor 
    Conditioning regimen Flu/Bu Flu/Bu/ATG Flu/Bu/ATG 
    GVHD prophylaxis MTX/tacrolimus MTX/tacrolimus MTX/tacrolimus 
    HAART during transplantation Atazanavir, lamivudine, tenofovir Efavirenz, emtricitabine/tenofovir Efavirenz, emtricitabin/tenofovir 
Transplantation outcome    
    Response CR CR CR 
    Alive Yes Yes Yes 
    OS, days +802 +368 +651 
    PFS, days +802 +160 +651 
    Acute GVHD grade II 
    Chronic GVHD Extensive Limited Limited 
    Current IST None None None 
    Current KPS 100 90 100 
Posttransplantation immune reconstitution and HIV control   
    CD4 count, cells/μL    
        Baseline 457 339 189 
        Day +90 N/A 174 472 
        Day +180 450 N/A 867 
        Day +365 397 270 616 
        Beyond 1 y 549 — 675 
    CD8 count, cells/μL    
        Baseline 1039 421 656 
        Day +90 N/A 957 3781 
        Day +180 589 N/A 2138 
        Day +365 366 3532 2545 
        Beyond 1 y 650 — 2507 
    Lymphoid/myeloid chimerism, %    
        Day +30 26/100 90/100 90/100 
        Day +180 69/100 100/100 100/100 
        Day +360 100/90 100/100 100/100 
    HIV RNA viral load    
        Pretransplantation 814 copies/mL Undetectable Undetectable 
        Day +30 Undetectable Undetectable Undetectable 
        Day +90 Undetectable Undetectable Undetectable 
        Day +180 Undetectable Undetectable Undetectable 
        Day +365 Undetectable Undetectable Undetectable 
        Beyond 1 y 363 copies/mL — Undetectable 
    Other infections EBV reactivation (day +90) Candida glabrata fungemia (day +3); CMV reactivation (day +26); Klebsiella oxytoca UTI (day +31) Enterobacter agglomerans bacteremia (day +108); MRSA bacteremia, catheter-associated (day +133) 

ATG indicates antithymocyte globulin; Bu, busulfan; CMV, cytomegalovirus; CR, complete remission; EBV, Epstein-Barr virus; Flu, fludarabine; GVHD, graft-versus-host disease; HAART, high active antiretroviral therapy; HCT-CI, hematopoietic cell transplantation comorbidity index; IST, immunosuppressive therapy; KPS, Karnofsky performance score; MTX, methotrexate; MRSA, methicillin-resistant Staphylococcus aureus; N/A, not available; OS, overall survival; PFS, progression-free survival; UPN, unique patient number; and UTI, urinary tract infection.

Median patient age was 51 years (range, 39-55 years). One patient each had AML [unique patient number (UPN) 1], Burkitt lymphoma (UPN2) and plasmablastic lymphoma (CD138+, CD20, HHV8+, EBER1, EBER2; UPN3). All patients were in second complete remission (CR) at the time of transplantation. Median pre-ASCT CD4 count was 339 cells/uL (range, 189-457 cells/μL). HIV RNA viral load at baseline was undetectable in 2 patients and 814 copies/mL in UPN1. Donors included sibling (n = 1) or unrelated volunteers (n = 2). Highly active antiretroviral therapy (HAART) was not interrupted during RIC-ASCT. All patients successfully engrafted. Only UPN3 developed transient grade II acute GVHD. At median follow-up of 651 days, all patients are alive and off immunosuppression without active GVHD. UPN2 relapsed at day +160, but subsequently achieved CR after a donor lymphocyte infusion. Posttransplantation HIV RNA viral loads remain undetectable in 2 patients. UPN1, with a 20-year history of heavily pretreated HIV/AIDS, developed elevated HIV RNA viral loads (15 000 copies/mL) 18 months after ASCT, which responded to switching HAART to tipranavir and lamivudine. No AIDS-related opportunistic infections were seen. The details of other infectious complications are summarized in Table 1. Donor-cell chimerism and immune reconstitution after ASCT were prompt (Table 1).

Initial experience with RIC-ASCT in HIV+ patients (n = 2), showed development of acute retroviral syndrome after transplantation, likely secondary to interruption of HAART.5  Uninterrupted HAART was attempted in another study using nonmyeloablative conditioning ASCT (n = 2), but disease relapse and GVHD appeared problematic, probably due to nominal intensity of the conditioning regimen and less aggressive GVHD prophylactic strategy used.6  Our study provides critical preliminary evidence that in the modern era, RIC-ASCT with uninterrupted HAART is safe and feasible in HIV+ patients. Moreover, our data suggest that for HIV+ patients lacking sibling donors, unrelated donors are acceptable, and that in this patient population, administration of thymoglobulin (for GVHD prophylaxis) and donor lymphocyte infusion (after relapse) does not cause any unexpected toxicities.

In conclusion, our encouraging experience strongly argues that HIV+ patients with advanced hematologic malignancies should no longer be routinely denied the potentially curative modality of RIC-ASCT.

Contribution: M.H. designed and performed the study, analyzed and interpreted the data, and wrote the manuscript. S.M.D. designed and performed the study, analyzed and interpreted the data, and approved the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Mehdi Hamadani, MD, Division of Hematology and Oncology, Arthur G. James Comprehensive Cancer Center, The Ohio State University, M365 Starling Loving Hall, 320 West 10th Ave, Columbus, OH 43210; e-mail: mehdi.hamadani@gmail.com.

1
Angelucci
 
E
Lucarelli
 
G
Baronciani
 
D
, et al. 
Bone marrow transplantation in an HIV positive thalassemic child following therapy with azidothymidine.
Haematologica
1990
, vol. 
75
 (pg. 
285
-
287
)
2
Cooper
 
MH
Maraninchi
 
D
Gastaut
 
JA
, et al. 
HIV infection in autologous and allogeneic bone marrow transplant patients: a retrospective analysis of the Marseille bone marrow transplant population.
J Acquir Immune Defic Syndr
1993
, vol. 
6
 (pg. 
277
-
284
)
3
Bowden
 
RA
Coombs
 
RW
Nikora
 
BH
, et al. 
Progression of human immunodeficiency virus type-1 infection after allogeneic marrow transplantation.
Am J Med
1990
, vol. 
88
 (pg. 
49N
-
52N
)
4
Fernández-Avilés
 
F
Urbano-Ispizua
 
A
Aymerich
 
M
, et al. 
Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers predicts graft rejection and relapse, respectively, after allogeneic transplantation of CD34+ selected cells from peripheral blood.
Leukemia
2003
, vol. 
17
 (pg. 
613
-
620
)
5
Kang
 
EM
de Witte
 
M
Malech
 
H
, et al. 
Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome.
Blood
2002
, vol. 
99
 (pg. 
698
-
701
)
6
Woolfrey
 
AE
Malhotra
 
U
Harrington
 
RD
, et al. 
Generation of HIV-1-specific CD8+ cell responses following allogeneic hematopoietic cell transplantation.
Blood
2008
, vol. 
112
 (pg. 
3484
-
3487
)
Sign in via your Institution