Hdm2 is up-regulated in several malignancies including sarcomas and acute myeloid leukemia, where it counteracts the anti-proliferative and pro-apoptotic effect of wild type p53. The anti-apoptotic protein Bcl-2 is often elevated in many tumors with wild type p53 and serves to block p53-induced apoptosis. We demonstrate that the protein level of Hdm2 positively correlates with the level of Bcl-2 and follows the Bcl-2 level in different cell systems. Over-expression of Bcl-2 protects Hdm2 from DNA-damage induced degradation in a dose dependant manner. In addition, modulation of Bcl-2 by shRNA knockdown reduced the Hdm2 protein level in parallel. Consequently, treatment of AML cells with the Bcl-2 small inhibitory molecule HA14-1 attenuated the level of Hdm2. The Bcl-2 level, but not the DNA damage induced Hdm2 degradation, was affected by disruption of the E3 ubiquitin ligase activity of Hdm2. In addition, the DNA-damage induced Hdm2 down-regulation was blocked by disrupted E1 ubiquitin-activation, defect polyubiquitination and by proteasome inhibitors. Finally, we show that Bcl-2 protection from p53-induced cell death requires co-expression of Hdm2 in double null p53/mdm2 mouse embryonic fibroblasts. Our results indicate that Bcl-2 regulates the Hdm2 level and that Hdm2 is a key mediator in Bcl-2 inhibition of p53-induced apoptosis. This is of particular therapeutic interest for cancers displaying elevated Hdm2 and Bcl-2, like sarcoma and acute myeloid leukemia.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution