Abstract
DNA methyltransferase inhibitors (DNMTI), including 5-azacytidine and 5-aza-2′- deoxycytidine, are a new class of epigenetic drug, which exhibit higher response rates in myelodysplastic syndrome (MDS) patients. Cell differentiation agent (CDA-2) is a kind of urine extracts, which contains several DNMTIs. A phase IV clinical trials for MDS showed total response rate is 69.22%. In the present study, we investigated the mechanism of CDA-2 on MDS using high-risk MDS cell line namely MuTz-1. MTT assay results showed that CDA-2 significantly inhibit the cell growth at a dose and time-dependent manner. Flow cytometer anlyasis showed that this growth inhibition was remarkblely associated with cycle arrest in G1-phase, but not associated with apoptosis. In addition, CDA-2 increased the expression of CD11b/CD14, a pair markers representing cell differentiation. we found the spectrum of hypermethylated tumor suppressor genes (TIMP3, CDKN2B, CHFR, CD44, RASSF1, TP73, IGSF4, CDH13 and DAPK) in MuTz-1 cells by Methylation-Specific Multiplex ligation-dependent Probe amplification (MS-MLPA), but the hypermethylation of these genes were remarkable decreased, as well as the expressions of DNA methyltransferase genes DNMT1 and DNMT3B at mRNA and protein level were downregulated in the treatment for 3 days with CDA-2. Also, we used CDA-2 for treatment of three MDS patients, whose several tumor suppressor genes are hypermethylated. After tour weeks of treatment, all the hypermethylation genes were undetected, part of this result was verified by methylation specific PCR (MSP) and bisulphite sequencing. In conclusion, our results demonstrated that CDA-2 may be an effective agent targeting hepermethylated tumor suppressor genes on MDS.
Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal