Deregulation of tyrosine-kinases is a characteristic of most Myeloproliferative Neoplasms (MPN); evolution from chronic phase to acute leukemia depends on the acquisition of additional mutations. Reactive Oxygen Species (ROS), the production of which is increased by tyrosine-kinase activation, can be responsible for additional mutations. The role of ROS in generating genetic aberrations has been mainly studied in BCR-ABL-positive cell lines. Little is known of ROS metabolism in primary cells from CML or Philadelphia-negative MPN (Ph-MPN). After informed consent, cells from blood or bone marrow were obtained from patients diagnosed with CML (12 bone marrow (BM), 8 peripheral blood (PB)), or Ph-MPN (4 Polycythemia Vera, 6 Essential Thrombocythemia, 3 Primary Myelofibroses, 2 atypical CML) and from healthy donors (bone marrow donors) or patients devoid of hematological disease undergoing thoracotomy. Cells were incubated with DCFDA, a fluorogenic marker of ROS production, labelled with an anti-CD45 antibody, stimulated with either the oxidant hydrogen peroxide (H2O2) or the PKC activator Phorbol Myristate Acetate (PMA), and analysed for ROS production by flow cytometry. CD45/SSC gating allowed separate analysis of granulocytes, monocytes or lymphocytes. The basal level of ROS was not higher in CML cells as compared to normal BM or PB leukocytes. It was even significantly lower in CML lymphocytes, either from the BM (2.35 Arbitrary Units vs 8.3 AU, p=5.5 10−5) or PB (2.47 AU vs 7.4 AU, p=3.10−5) and in CML granulocytes from peripheral blood (14 AU vs 45 AU, p =10 −5), but not bone marrow. The ROS levels of Ph-MPN cells were similar or slightly higher than control cells. Upon H2O2 stimulation however, ROS production increased significantly more in CML cells as compared to normal cells (6 fold increase), whatever the cell type (granulocytes, monocytes and lymphocytes) or their origin (PB or BM). In contrast, for Ph-MPN cells, H2O2-stimulated ROS production was close to that of normal cells, with only BM lymphocytes showing ROS generation four fold higher than control BM lymphocytes. After PMA stimulation, which yielded a more modest ROS production than H2O2, CML cells behaved similarly to normal cells, whereas ROS production was four fold higher in Ph-MPN cells, whatever their type and origin. In conclusion, ROS levels at the basal stage are not higher in MPN cells, whether they are Philadelphia positive or negative, as compared to normal cells. Various kinds of stimulation induce different patterns of response, CML cells being more sensitive to oxidants whereas Ph-MPN cells respond more to the cytokine-mimicking agent PMA. These results suggest that the mechanisms of ROS generation and thus of genetic instability are different in CML and Ph-MPN.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution