One of the hallmark events of sickle cell disease (SCD) is vasoocclusion and episodic pain crisis. Although the mechanism of vascular occlusion is very complicated, processes like thrombosis and thromboembolism have been recognized to play an important role in the development of such clinical manifestation in SCD. Studies have shown that the von Willebrand factor (VWF), especially the ultra-large (UL) multimers play a major role in vasoocclusion, which clearly indicates a possible impairment of the VWF-cleaving metalloproteae ADAMTS-13 in these patients with SCD. In a recent work, indeed we have mentioned that the plasma ADAMTS-13 in patients with SCD having normal antigen level showed 35% less protease activity than the normal. There may be several plasma factors responsible for the acquired deficiency of ADAMTS-13 in SCD. Since, the increasing evidences suggest that the elevated level of extracellular hemoglobin (Hb) in plasma parallely associated with the pathogenesis of SCD, we investigated the effects of extracellular Hb on VWF proteolysis by ADAMTS-13. We observed that purified Hb dose-dependently inhibited the ADAMTS-13 cleavage of recombinant(r) VWF and endothelial ULVWF multimers under static and flow conditions. Hb bound to VWF multimers in a saturation-dependent manner and more potently to the rVWFA2 domain (affinity Kd~24nM), which contains the cleavage site for ADAMTS-13. Hb bound also to the ADAMTS-13 (Kd~65nM), with 2.7 times less affinity than to VWFA2. The bindings were neither calcium-dependent nor affected by haptoglobin. However, it is the Hb-binding to VWF that prevented the substrate from being cleaved by ADAMTS-13. These in vitro findings are consistent with the in vivo observations in patients with SCD. An elevated level of extracellular Hb in plasma was inversely correlated (linear regression, r2 =0.6354) with the low activity of ADAMTS-13 in a cohort of ten adult patients with SCD (mean±SE, Hb 346±138 mg/l; activity 33.3±30%) compared to age and gender-matched normal individuals (n=10; Hb 24±8 mg/l; activity 76.2±16%). The data together suggest that patients with SCD suffer from acquired ADAMTS-13 deficiency, primarily because Hb competitively binds and inhibits the proteolysis of VWF multimers, leading to ULVWF accumulation on vascular endothelium and in circulation. The Hb-VWF interaction may therefore be considered as a therapeutic target for reducing thrombotic and vasoocclusive complications in patients with severe hemolysis such as those with SCD.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution