In this study, we explored the telomeric changes that occur in B-chronic lymphocytic leukemia (B-CLL), in which telomere length has recently been demonstrated to be a powerful prognostic marker. We carried out a transcriptomic analysis of telomerase components (hTERT and DYSKERIN), shelterin proteins (TRF1, TRF2, hRAP1, TIN2, POT1, and TPP1), and a set of multifunctional proteins involved in telomere maintenance (hEST1A, MRE11, RAD50, Ku80, and RPA1) in peripheral B cells from 42 B-CLL patients and 20 healthy donors. We found that, in B-CLL cells, the expressions of hTERT, DYSKERIN, TRF1, hRAP1, POT1, hEST1A, MRE11, RAD50, and KU80 were more than 2-fold reduced (P < .001), contrasting with the higher expression of TPP1 and RPA1 (P < .001). This differential expression pattern suggests that both telomerase down-regulation and changes in telomeric proteins composition are involved in the pathogenesis of B-CLL.

Telomeres are nucleoprotein structures that cap chromosomes and shorten with each division. Telomere structure and functions depend on the telomerase enzyme (hTERT, hTR, DYSKERIN) for elongation,1  on the shelterin complex (TRF1, TRF2, TIN2, hRAP1, TPP1, POT1) that regulates telomere length and protects them against degradation and fusion, and on a set of multifunctional factors, including RPA1, hEST1A, KU70/KU80 and the RAD50-MRE11-NBS1 complex2  (Figure 1A).

Figure 1

The telomere maintenance system in B-CLL. (A) Telomeric structure maintenance involved numerous proteins, whose precise function still remains largely unknown. We summarize here the actual data in the field. The telomeric double-strand DNA protrudes to form a single-strand overhang. The telomerase complex, in gray, is formed by the catalytic subunit hTERT associated with the template RNA named hTR, and Dyskerin. POT1-TTP1 heterodimer binds to the telomeric overhang and activates the processivity of telomerase.23  hEST1A24  and Ku70/80 interact with the telomerase, whereas RPA1 binds single-strand DNA. Based on studies in yeast, these 3 components are thought to facilitate the access of telomerase to chromosome ends.2  The shelterin complex, in black, is required to protect telomeres.2  TRF1 inhibits telomerase, whereas POT1 behaves either as an activator or an inhibitor of telomerase activity, depending on its mode of fixation to chromosome ends. These complexes interact with DNA-damage response proteins, as KU70/KU80 and the MRN complex (MRE11-RAD50-NBS1). Among these cofactors, those whose down-regulation is associated with telomere shortening, are depicted as crossed-hatched.2  (B) Quantitative PCR analyses were led on cDNA of peripheral B cells from 42 B-CLL patients and 20 healthy donors. All the box-plots correspond to the β-ACTIN normalized data, except for POT1 (RPL13A) and BCL-2 (RPL19) for which no statistical test can be applied on β-actin-derived data. The corresponding P values are shown in each box. The horizontal lines are medians, the boxes 25th percentiles, and the whiskers 75th percentiles. (C,D) Analyses were carried out on cells from a B-CLL patient and a normal healthy donor, before (Co) and after 48 hours of SAC/IL2 (SAC/IL2) treatment. (C) Q-PCR analysis of hTERT expression is shown (reference gene: β-ACTIN). (D) A trap assay was realized to measure telomerase activity, the gel analysis is shown (different lanes of the same gel are shown) for the different conditions tested and for a positive control (HeLa cells), and quantities of protein per assay are mentioned (mg). (E) Fold expression variation of telomeric proteins observed in B-CLL versus normal B cells. F indicates multiplication factor.

Figure 1

The telomere maintenance system in B-CLL. (A) Telomeric structure maintenance involved numerous proteins, whose precise function still remains largely unknown. We summarize here the actual data in the field. The telomeric double-strand DNA protrudes to form a single-strand overhang. The telomerase complex, in gray, is formed by the catalytic subunit hTERT associated with the template RNA named hTR, and Dyskerin. POT1-TTP1 heterodimer binds to the telomeric overhang and activates the processivity of telomerase.23  hEST1A24  and Ku70/80 interact with the telomerase, whereas RPA1 binds single-strand DNA. Based on studies in yeast, these 3 components are thought to facilitate the access of telomerase to chromosome ends.2  The shelterin complex, in black, is required to protect telomeres.2  TRF1 inhibits telomerase, whereas POT1 behaves either as an activator or an inhibitor of telomerase activity, depending on its mode of fixation to chromosome ends. These complexes interact with DNA-damage response proteins, as KU70/KU80 and the MRN complex (MRE11-RAD50-NBS1). Among these cofactors, those whose down-regulation is associated with telomere shortening, are depicted as crossed-hatched.2  (B) Quantitative PCR analyses were led on cDNA of peripheral B cells from 42 B-CLL patients and 20 healthy donors. All the box-plots correspond to the β-ACTIN normalized data, except for POT1 (RPL13A) and BCL-2 (RPL19) for which no statistical test can be applied on β-actin-derived data. The corresponding P values are shown in each box. The horizontal lines are medians, the boxes 25th percentiles, and the whiskers 75th percentiles. (C,D) Analyses were carried out on cells from a B-CLL patient and a normal healthy donor, before (Co) and after 48 hours of SAC/IL2 (SAC/IL2) treatment. (C) Q-PCR analysis of hTERT expression is shown (reference gene: β-ACTIN). (D) A trap assay was realized to measure telomerase activity, the gel analysis is shown (different lanes of the same gel are shown) for the different conditions tested and for a positive control (HeLa cells), and quantities of protein per assay are mentioned (mg). (E) Fold expression variation of telomeric proteins observed in B-CLL versus normal B cells. F indicates multiplication factor.

Close modal

Telomerase activity is absent or very low in somatic cells and increased in proliferative lymphoid cells.3  In most cancer cells, the catalytic subunit of telomerase (hTERT) is overexpressed to allow their long-term proliferation.4  Research in oncogenesis is now focusing on the other telomeric genes, especially the shelterin complex.5,,,,10  Specific changes in the expression of these genes in cancers may provide new knowledge about oncogenesis and useful clinical markers, but would also lead to the development of new therapeutic agents.

B-cell chronic lymphocytic leukemia (B-CLL) results from the progressive accumulation of a leukemic clone (for review, see Chiorazzi and Ferrarini11 ) that shows lower telomerase activity at disease onset12  and increased activity in advanced stages and bad prognosis group.13  Telomeres are shorter in B-CLL cells versus normal B cells, and especially short for patients with bad prognosis. Telomere length is thus a powerful prognostic marker for B-CLL.13,14  In this work, we investigated whether the transcriptional status of the telomeric proteins is modified in B cells from B-CLL patients.

Isolation of human B cells

After consent was obtained in accordance with the Declaration of Helsinki and according to institutional guidelines, total blood samples were collected from 20 healthy donors (at the “Etablissement Français du Sang” of Lyon and Pitié-Salpétrière Hospital) and from 42 B-CLL patients (at the Lyon Sud and Pitié-Salpétrière Hospitals). Diagnoses were confirmed using morphology and flow-cytometry usual B-CLL characteristics (Matutes score ≥ 4). B lymphocytes were purified from peripheral blood by negative selection using the RosetteSep Human B-cell enrichment cocktail (Stem Cell Technologies, Vancouver, BC). The percentage of CD19+ cells was determined by cytometric assay using an α-CD19-PE antibody (GE Healthcare, Little Chalfont, United Kingdom). More than 75% and 90% of CD19+ labeling was obtained for normal B cells and B-CLL cells, respectively. Binet stage, karyotype, fluorescent in situ hybridization, and mutational status (analyses were carried out as previously described15 ) features are summarized in Table 1.

Table 1

Clinical features of B-CLL patients

Binet stageMutational statusDel 13q14del 11q22+12del 17p13Karyotype analysis
LLC′1 UM — — — ND 
LLC′3 — — — ND 
LLC′7 — — — — 
LLC′9 ND ND ND ND ND 
LLC′11 — — — ND 
LLC′26 ND ND ND ND ND ND 
LLC′19 A+ ND ND ND ND ND ND 
LLC′23 A+ — — ND 
LLC′28 — — ND 
LLC′31 A+ UM — — — +12, t(14;19) 
LLC′32 — — — ND 
LLC′13 UM — — — ND 
LLC′14 A+ — — — ND 
LLC′17 ND ND ND ND ND ND 
LLC′29 ND ND ND ND ND ND 
LLC′15 UM — — — ND 
LLC2 — — — — 
LLC3 NA — — — del 13(q13q14) 
LLC5 NA — — — del 13(q22q31) 
LLC6 — — — 
LLC7 UM — — — — 
LLC9 A+ UM — — — — 
LLC 11 UM — — — add 14q32/del 13q(q12-q22) 
LLC18 ND ND ND ND ND 
LLC21 A/B ND ND ND ND ND 
LLC23 B+ — — — 13q21abnormality 
LLC30 — — — 
LLC31 A+ — — t(11;14)/del17p11 
LLC33 — — — 
LLC34 UM — — — 
LLC39 — — — 
LLC41 — — — t(14;18)(q32;q21) 
LLC44 — — — del13q 
LLC47 ND ND ND ND ND 
LLC50 — — — — 
LLC51 — — — — 
LLC54 — — — 
LLC55 — — — del6q 
LLC56 UM — — — +12 
LLC57 NA — — — — t(7;22) 
LLC95 NA UM — — — — 
LLC98 — — — 
Binet stageMutational statusDel 13q14del 11q22+12del 17p13Karyotype analysis
LLC′1 UM — — — ND 
LLC′3 — — — ND 
LLC′7 — — — — 
LLC′9 ND ND ND ND ND 
LLC′11 — — — ND 
LLC′26 ND ND ND ND ND ND 
LLC′19 A+ ND ND ND ND ND ND 
LLC′23 A+ — — ND 
LLC′28 — — ND 
LLC′31 A+ UM — — — +12, t(14;19) 
LLC′32 — — — ND 
LLC′13 UM — — — ND 
LLC′14 A+ — — — ND 
LLC′17 ND ND ND ND ND ND 
LLC′29 ND ND ND ND ND ND 
LLC′15 UM — — — ND 
LLC2 — — — — 
LLC3 NA — — — del 13(q13q14) 
LLC5 NA — — — del 13(q22q31) 
LLC6 — — — 
LLC7 UM — — — — 
LLC9 A+ UM — — — — 
LLC 11 UM — — — add 14q32/del 13q(q12-q22) 
LLC18 ND ND ND ND ND 
LLC21 A/B ND ND ND ND ND 
LLC23 B+ — — — 13q21abnormality 
LLC30 — — — 
LLC31 A+ — — t(11;14)/del17p11 
LLC33 — — — 
LLC34 UM — — — 
LLC39 — — — 
LLC41 — — — t(14;18)(q32;q21) 
LLC44 — — — del13q 
LLC47 ND ND ND ND ND 
LLC50 — — — — 
LLC51 — — — — 
LLC54 — — — 
LLC55 — — — del6q 
LLC56 UM — — — +12 
LLC57 NA — — — — t(7;22) 
LLC95 NA UM — — — — 
LLC98 — — — 

FISH analyses were led to determine 13q14, 17p13, 11q22 deletion and trisomy 12 (+12).

ND indicates not done; NA, not available; N, normal; +, previously treated; M, mutated; UM, unmutated; add, addition; del, deletion; t, translocation; and —, not applicable.

BCR stimulation, cell-cycle assay, and telomerase activity

B cells cultured on 10% fetal bovine serum supplemented RPMI, under 5% CO2 atmosphere, were treated 48 hours by 0.001% of SAC suspension (Staphylococcus aureus Cowan strain I; Calbiochem, San Diego, CA) and 1 ng/mL of interkeukin-2 (Boehringer, Reims, France). Telomerase activity was measured by TRAPeze assay following the kit instruction (Intergent, New York, NY).

Reverse transcription and quantitative polymerase chain reaction

RNA extracted from purified B cells (Nalgene, New York, NY) was reverse-transcribed using random hexamer, Superscript II, and dNTP (Invitrogen, Carlsbad, CA). Quantitative PCR (Epicentre, Invitrogen, QIAGEN, Courtaboeuf, France) on opticon 3 thermocycler (Bio-Rad, Hercules, CA) was runfollowing the producer instructions. Sequences of primers used for PCR are listed in Table 2.

Table 2

Sequences of primer used in the qPCR assays

GeneForward primerReverse primer
hTERT TGTTTCTGGATTTGCAGGTG GTTCTTGGCTTTCAGGATGG 
DYSKERIN CTGCTATGGGGCCAAGATTA CCATGGTCGCAGGTAGAGAT 
hEST1A AGGAACTGCTGGACAAGAGGA CGCAACATTTCCCCTACACT 
TRF1 GCTGTTTGTATGGAAAATGGC CCGCTGCCTTCATTAGAAAG 
TRF2 GACCTTCCAGCAGAAGATGCT GTTGGAGGATTCCGTAGCTG 
hRAP1 CGGGGAACCACAGAATAAGA CTCAGGTGTGGGTGGATCAT 
POT1 TGGGTATTGTACCCCTCCAA GATGAAGCATTCCAACCACGG 
TPP1 CCCGCAGAGTTCTATCTCCA GGACAGTGATAGGCCTGCAT 
TIN2 GGAGTTTCTGCGATCTCTGC GATCCCGCACTATAGGTCCA 
MRE11 GCCTTCCCGAAATGTCACTA TTCAAAATCAACCCCTTTCG 
RAD50 CTTGGATATGCGAGGACGAT CCAGAAGCTGGAAGTTACGC 
KU80 CCCCAATTCAGCAGCATATT CCTTCAGCCAGACTGGAGAC 
RPA1 AGGCACCCTGAAGATTGCTA GGCGTCTTCATAGCTCTTGC 
Ki-67 ATGCAGACCCAGTGGACACC TGCTGCCGGTTAAGTTCTCT 
ZAP-70 CAGCTGGACAACCCCTACAT GGTTAACCAGCAGGACGTTG 
BCL2 GGTGGAGGAGCTCTTCAGG GCCGGTTCAGGTACTCAGTC 
β-ACTIN AGCACTGTGTTGGCGTACAG TCCCTGGAGAAGAGCTACGA 
RPL13A AGCTCATGAGGCTACGGAAA CTTGCTCCCAGCTTCCTATG 
RPL19 ATCGATCGCCACATGTATCA GCGTGCTTCCTTGGTCTTAG 
GeneForward primerReverse primer
hTERT TGTTTCTGGATTTGCAGGTG GTTCTTGGCTTTCAGGATGG 
DYSKERIN CTGCTATGGGGCCAAGATTA CCATGGTCGCAGGTAGAGAT 
hEST1A AGGAACTGCTGGACAAGAGGA CGCAACATTTCCCCTACACT 
TRF1 GCTGTTTGTATGGAAAATGGC CCGCTGCCTTCATTAGAAAG 
TRF2 GACCTTCCAGCAGAAGATGCT GTTGGAGGATTCCGTAGCTG 
hRAP1 CGGGGAACCACAGAATAAGA CTCAGGTGTGGGTGGATCAT 
POT1 TGGGTATTGTACCCCTCCAA GATGAAGCATTCCAACCACGG 
TPP1 CCCGCAGAGTTCTATCTCCA GGACAGTGATAGGCCTGCAT 
TIN2 GGAGTTTCTGCGATCTCTGC GATCCCGCACTATAGGTCCA 
MRE11 GCCTTCCCGAAATGTCACTA TTCAAAATCAACCCCTTTCG 
RAD50 CTTGGATATGCGAGGACGAT CCAGAAGCTGGAAGTTACGC 
KU80 CCCCAATTCAGCAGCATATT CCTTCAGCCAGACTGGAGAC 
RPA1 AGGCACCCTGAAGATTGCTA GGCGTCTTCATAGCTCTTGC 
Ki-67 ATGCAGACCCAGTGGACACC TGCTGCCGGTTAAGTTCTCT 
ZAP-70 CAGCTGGACAACCCCTACAT GGTTAACCAGCAGGACGTTG 
BCL2 GGTGGAGGAGCTCTTCAGG GCCGGTTCAGGTACTCAGTC 
β-ACTIN AGCACTGTGTTGGCGTACAG TCCCTGGAGAAGAGCTACGA 
RPL13A AGCTCATGAGGCTACGGAAA CTTGCTCCCAGCTTCCTATG 
RPL19 ATCGATCGCCACATGTATCA GCGTGCTTCCTTGGTCTTAG 

Statistical analysis

Gene expression levels were normalized using 3 reference genes (RPL13A, β-ACTIN, and RPL19). Distribution and variance equality were analyzed for each gene, in normal and B-CLL populations. Three different tests were run: Student (for gaussian populations with equal variance), Welch (for gaussian populations with different variance), or Wilcoxon (for nongaussian populations with equal variance) to determine the P value.

We determined the mRNA level of telomeric proteins in B cells from 42 B-CLL patients and 20 healthy donors. As previously published, ZAP-70 and BCL2 expressions were increased and those of KI-67 and hTERT were decreased (respective ratios: 25.6, 21, 0.26, and 0.04)12,16,18  (Figure 1B,E). We further showed that levels of hTERT and telomerase activity are correlated in B cells from one patient and one healthy donor (Figure 1C,D). Both levels cannot be increased by mitogenic stimulation in the patient cells, in which no cycling activity was observed (data not shown). Among the other factors implicated in telomerase activity, the expression of DYSKERIN, POT1, and hEST1A is also significantly reduced (2.4-, 5.8-, and 4.8-fold, respectively), whereas the one of TPP1 is increased (5.1-fold). Concerning the other shelterin components, the mRNA levels are lower in B-CLL cells for TRF1 and hRAP1 (2.9- and 3.0-fold, respectively), slightly reduced for TRF2 (1.2-fold), and almost unchanged for TIN2. We also observed a decrease in mRNA level of KU80, MRE11, and RAD50 (2.1-, 2.4-, and 11.1-fold, respectively) (Figure 1B,E) and an increase in RPA1 (9.7-fold).

Although these changes have to be confirmed at the protein level, they are expected to greatly affect the function of telomeres in B-CLL cells. The lower expression level of various factors involved in telomerase activity should impair telomere regeneration at each S-phase. Moreover, the altered expression of telomere capping factors might disrupt the capping complex, facilitating telomere degradation and shortening independently of the telomerase status. This correlates with telomeric damages already observed in B-CLL cells.11,19  Our results, together with the fact that these cells could proliferate at appreciable levels,20  suggest that the short telomeres observed in B-CLL cells in comparison with normal B cells but also with other types of B-cell malignancies21  might result from specific defects in telomerase-dependent and telomerase-independent pathways of telomere elongation. This would also explain the shorter telomeres observed in patients with severe outcome, despite an increase in telomerase activity.13  Finally, our results suggest that B-CLL cells may be particularly sensitive to telomere-damaging drugs, such as BIBR32, which exerts a cytotoxic effect on B-CLL cells mainly by damaging telomeres.22 

In conclusion, our results provide the first evidence of a global modification in the expression of telomeric genes in B-CLL, which is characterized by a low expression of many components involved in telomere elongation and capping.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

The authors thank D.P.'s medical supervisor Pr Jean André and Corrine Béal for sampling.

La Ligue Nationale contre le Cancer supported E.G.'s laboratory (équipe labellisée); Institut Nationale du Cancer (program EPIPRO) supported E.G.'s and G.S.'s laboratories; and Association Recherche contre le Cancer (ARECA program on Epigenetic Profiling) financed C.T.R.'s fellowship and the laboratories of L.S. and J.D.

Contribution: D.P. performed research, interpreted data, and cowrote the article; C.T.R., A.B., A.R.C., and E.B.S. performed research; H.M.-B., E.C.-B., G.S., L.S., and J.D. collected biologic samples and reviewed the article; E.G. designed and coordinated the research, interpreted data, and cowrote the article.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Eric Gilson, UMR5239, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; e-mail: eric.gilson@ens-lyon.fr.

1
Cohen
SB
Graham
ME
Lovrecz
GO
Bache
N
Robinson
PJ
Reddel
RR
Protein composition of catalytically active human telomerase from immortal cells.
Science
2007
315
1850
1853
2
Gilson
E
Geli
V
How telomeres are replicated.
Nat Rev Mol Cell Biol
2007
8
825
838
3
Ohyashiki
JH
Sashida
G
Tauchi
T
Ohyashiki
K
Telomeres and telomerase in hematologic neoplasia.
Oncogene
2002
21
680
687
4
Kim
NW
Piatyszek
MA
Prowse
KR
et al
Specific association of human telomerase activity with immortal cells and cancer.
Science
1994
266
2011
2015
5
Nakanishi
K
Kawai
T
Kumaki
F
et al
Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung.
Clin Cancer Res
2003
9
1105
1111
6
Hsu
CP
Lee
LW
Shai
SE
Chen
CY
Clinical significance of telomerase and its associate genes expression in the maintenance of telomere length in squamous cell carcinoma of the esophagus.
World J Gastroenterol
2005
11
6941
6947
7
Lin
X
Gu
J
Lu
C
Spitz
MR
Wu
X
Expression of telomere-associated genes as prognostic markers for overall survival in patients with non-small cell lung cancer.
Clin Cancer Res
2006
12
5720
5725
8
Salhab
M
Jiang
WG
Newbold
RF
Mokbel
K
The expression of gene transcripts of telomere-associated genes in human breast cancer: correlation with clinicopathological parameters and clinical outcome.
Breast Cancer Res Treat
2007
[Epub ahead of print]
9
Swiggers
SJ
Kuijpers
MA
de Cort
MJ
Beverloo
HB
Zijlmans
JM
Critically short telomeres in acute myeloid leukemia with loss or gain of parts of chromosomes.
Genes Chromosomes Cancer
2006
45
247
256
10
Bellon
M
Datta
A
Brown
M
et al
Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia.
Int J Cancer
2006
119
2090
2097
11
Chiorazzi
N
Ferrarini
M
B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor.
Annu Rev Immunol
2003
21
841
894
12
Counter
CM
Gupta
J
Harley
CB
Leber
B
Bacchetti
S
Telomerase activity in normal leukocytes and in hematologic malignancies.
Blood
1995
85
2315
2320
13
Damle
RN
Batliwalla
FM
Ghiotto
F
et al
Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations.
Blood
2004
103
375
382
14
Ricca
I
Rocci
A
Drandi
D
et al
Telomere length identifies two different prognostic subgroups among VH-unmutated B-cell chronic lymphocytic leukemia patients.
Leukemia
2007
21
697
705
15
Callet-Bauchu
E
Rimokh
R
Tigaud
I
et al
dic(4;17)(p11;p11): a new recurrent chromosomal abnormality in chronic B-lymphoid disorders.
Genes Chromosomes Cancer
1996
17
185
190
16
Klein
U
Tu
Y
Stolovitzky
GA
et al
Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells.
J Exp Med
2001
194
1625
1638
17
Crespo
M
Bosch
F
Villamor
N
et al
ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia.
N Engl J Med
2003
348
1764
1775
18
Bechter
OE
Eisterer
W
Dlaska
M
Kuhr
T
Thaler
J
CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia.
Exp Hematol
2002
30
26
33
19
Amiel
A
Goldzak
G
Gaber
E
et al
Random aneuploidy and telomere capture in chronic lymphocytic leukemia and chronic myeloid leukemia patients.
Cancer Genet Cytogenet
2005
163
12
16
20
Messmer
BT
Messmer
D
Allen
SL
et al
In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells.
J Clin Invest
2005
115
755
764
21
Ladetto
M
Compagno
M
Ricca
I
et al
Telomere length correlates with histopathogenesis according to the germinal center in mature B-cell lymphoproliferative disorders.
Blood
2004
103
4644
4649
22
El-Daly
H
Kull
M
Zimmermann
S
Pantic
M
Waller
CF
Martens
UM
Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532.
Blood
2005
105
1742
1749
23
Wang
F
Podell
ER
Zaug
AJ
et al
The POT1-TPP1 telomere complex is a telomerase processivity factor.
Nature
2007
445
506
510
24
Reichenbach
P
Hoss
M
Azzalin
CM
Nabholz
M
Bucher
P
Lingner
J
A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed.
Curr Biol
2003
13
568
574
Sign in via your Institution