Abstract
Persistence of fetal hemoglobin can ameliorate adult beta (β)-globin gene disorders. Since SCFAs can affect embryonic and fetal globin gene expression, we examined their role during development. Murine globin gene expression, β-type (embryonic βH1, and epsilon-y, εY, and adult βmajor), and alpha (α)-type (embryonic zeta, ζ, >α, adult α), were compared between wildtype (wt) and transgenic mice, in which a key enzyme for SCFA metabolism, PCCA, had been knocked out (PCCA−/−, (Miyazaki et al, 2001). E10.5 PCCA−/− yolk sac (n= 9), showed increased α, βH1 and ζ gene expression, at respectively 2-, 2.6- and 1.6-fold relative to wt (n=13, p<.05), and εY gene expression, at 1.7-fold (p=0.07). The embryonic-to-adult globin gene switch was modestly delayed in yolk sacs from E12.5 PCCA−/− (n=9) vs. wt (n=4) and E 14.5 PCCA−/− (n=6) vs. wt (n=6). % embryonic β-type globin gene expression (% βH1 and εY of total β globin) was 77±6 PCCA−/− and 74±3 wt at E12.5, p=n.s., and 42±13 PCCA−/− and 21±3 wt at E14.5, p<.05; % emvbryonic α-type expression (% ζ of total α) was 32±3 PCCA−/−, 25±1wt at E12.5, p<.05 and 7±2 PCCA−/− and 4±1 wt at E14.5, p<.05). Embryonic globin gene expression in E 12.5 and 14.5 fetal livers was not different between PCCA−/− and wt embryos. Cultures of pooled E14.5 wt fetal liver cells (FLCs, n=4 separate experiments), however, suggested that embryonic globin genes can be activated in FLCs. The percent of total β-type globin gene expression that was embryonic after culture with butyrate (1mM) was 11.6±2.6%, with propionate (2.5 mM) was 3.6±0.2%, and insulin/erythropoietin or basal media was 0.03±0.03% and 0.42±0.26% respectively (p<.05 relative to SCFAs). Dose-response with propionate (n=2 seaparate experiments) suggest inadequate endogenous propionate levels for activation in PCCA −/− fetal liver, as % embryonic β-type globin gene expression rose above basal levels only at concentrations of 1 to 5 mM (2.5 mM maximal) but not at <0.6 mM. We conclude that endogenous SCFAs, at levels achievable in vivo can activate embryonic globin gene expression during development in the murine yolk-sac. However, higher levels than achievable endogenously currently are necessary to produce this effect in murine fetal livers.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal