It is usually stated that HSCs must choose to either self-renew or to differentiate and lose some of their multi potentiality. Recently, we demonstrated that MEF, an ETS family of transcription factor, played an important role in regulating HSC quiescence, illustrating a third choice for the HSC, namely to make an “active” choice and remain quiescent, without undergoing either self-renewal, or differentiation. MEF null HSCs are more quiescent than normal HSCs. In addition, MEF null mice exhibit greater numbers of hematopoietic stem cells and show resistance to chemotherapy and radiation. Little is known about the regulation of self-renewal vs. quiescence of HSCs, however the cdk inhibitor p21 has been implicated in regulating both HSC quiescence and proliferation. In the absence of p21, hematopoietic stem cell numbers are reported to be increased, but so is proliferation, leading to stem cell exhaustion. This implies that while p21 may maintain HSCs in their quiescent state, MEF functions to facilitate the entry of quiescent HSCs into the cycle, To investigate the potential opposing roles of MEF and p21 in HSC quiescence and self-renewal and to test whether the quiescent state of MEF null HSCs is dependent on the presence of p21, we have generated MEF / p21 double-knockout (DKO) mice. These mice are viable and born at normal mendelian frequency. MEF / p21 DKO mice have a higher than normal proportion of HSCs in the G0 phase, based on Pyronin Y/Hoechst staining and staining for the proliferation antigen Ki-67. Thus, the increased quiescence is not dependent on the presence of p21. However, by measuring LSK cells, we have observed a normal number of HSCs in the bone marrow of MEF / p21 DKO mice, in contrast to the increased number of HSCs in the bone marrow of MEF null mice. This suggests that the increased number of hematopoietic stem cells in MEF null mice is dependent on p21. Ongoing studies will further address the unique mechanisms that control HSC vs. stem cell expansion.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution