High mobility group box chromosomal protein 1 (HMGB1) was recently identified as a late proinflammatory mediator of endotoxin lethality, which amplifies and sustains the inflammatory processes via macrophage/monocyte activation by extracellular release of HMGB1. However, it was originally described as a nonhistone nuclear protein to bind and distort the structure of DNA and to regulate transcription through association with several transcription factors. Here we investigated the effect of intracellular HMGB1 on transcriptional gene regulation of an immediate early proinflammatory cytokine IL-1β in transient transfection studies using HMGB1 expression vector (pcDNA3HMGB1) and murine macrophage cells RAW264.7. When pcDNA3HMGB1 was introduced into RAW264.7 cells with pGL3HT reporter containing the -131 to +12 minimal IL-1β gene promoter, IL-1β promoter activity was significantly induced by expression of HMGB1. The gene promoter possesses two important transcription factor binding motifs, one for PU.1, a myeloid and B cell-specific transcription factor that belongs to the ETS family, and the other a binding site for NF-IL6. To verify the functional role of intracellular HMGB1 in transactivation of the IL-1β promoter, a PU.1 expression vector and/or pcDNA3HMGB1 were cotransfected into PU.1-deficient murine thymocytes EL4 cells along with pGL3HT reporter. As a result, HMGB1 synergized with PU.1 to transactivate the IL-1β promoter, but not HMGB1 alone. This argument was supported by our GST-pulldown data, which demonstrated direct physical interaction of HMGB1 with PU.1. In addition, deletion of the PU.1 winged helix-turn-helix DNA-binding domain significantly inhibited the association of PU.1 with HMGB1. To determine whether HMGB1 could affect PU.1 DNA-binding affinity, we performed electrophoretic mobility shift assay using a radiolabeled IL-1β -59 to +12 promoter element (DT), recombinant PU.1 (rPU.1) and GST-HMGB1. Two complexes with slower and faster mobilities were generated by the addition of HMGB1 to a mixture of rPU.1 and DT probe. The two complexes were abrogated by preincubation with anti-PU.1 Ab, while anti-HMGB1 Ab reacted only with the complex with a slower mobility, indicating that the complex with a slower mobility formed by addition of HMGB1 contained both HMGB1 and PU.1, while the band with a faster mobility contained only PU.1. From the present study, we propose that intracellular HMGB1 might function as a coactivator in PU.1-mediated transcriptional activation, which facilitate access of PU.1 to specific DNA targets. The fact that PU.1 is a transcription factor essential to macrophages/monocyte-specific proinflammatory cytokine genes further raise the possibility that interaction of PU.1 with HMGB1 may play an important role in the inflammation cascade in macrophages/monocytes.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution