We and others have recently demonstrated that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor with anti-neoplastic properties, reduces experimental acute graft-versus-host disease (GVHD). We have now investigated the mechanisms of action of two HDAC inhibitors, SAHA and ITF 2357, on allogeneic immune responses. Bone marrow derived dendritic cells (DCs) were preincubated with the HDAC inhibitors at nanomolar concentrations for 16–18 hours and stimulated with lipopolysaccharide (LPS). Pretreatment of DCs caused a significant reduction in the secretion of TNF-α, IL-12p70 and IL-6 compared to the untreated controls (P< 0.005). Similar effects were seen using human peripheral blood mononuclear cell derived DCs. Pre-treatment of both murine and human DCs also significantly reduced their in vitro stimulation of allogeneic T cells as measured by proliferation and IFN-γ production (P<0.01). We determined the in vivo relevance of these observations utilizing a mouse model where the responses of allogeneic donor bm12 T cells depended on the function of injected host B6 DCs would stimulate. Recipient Class-II −/− B6 (H-2b) received 11 Gy on day -1 and were injected with 4–5 x 106 wild type B6 DCs treated with SAHA or with media on days -1 and 0 and then transplanted with 2 x 106 T cells and 5 x 106 TCDBM cells from either syngeneic B6 or allogeneic bm12 donors. SAHA treatment of DCs significantly reduced expansion of allogeneic donor CD4+ T cells on day +7 after BMT compared to controls (P<0.05). SAHA treatment induced a similarly significant reduction in the expansion of CD8+ cells in Class I disparate [bm1→β2M−/−] model. In vitro, SAHA treatment significantly suppressed the expression of CD40 and CD80 but did not alter MHC class II expression. Surprisingly, when mixed with normal DCs at 1:1 ratio, SAHA treated DCs dominantly suppressed allogeneic T cell responses. The regulation of T cell proliferation was not reversible by addition of IL-12, TNF-α, IL-18, anti-IL-10 or anti-TGFβ, either alone or in combination. Suppression of allogeneic responses was contact dependent in trans-well experiments. To address whether the regulation of SAHA treated DCs required contact with T cells, we devised a three cell experiment where SAHA treated DCs lacked the capacity to present antigens to T cells. DCs from B6 MHC Class II deficient (H-2b) were treated with SAHA and co-cultured with wild type B6 (H-2b) DCs along with purified allogeneic BALB/c (H-2d) CD4+ T cells in an MLR. Allogeneic CD4+ T cells proliferated well, demonstrating the regulation to be dependent on contact between SAHA treated DCs and T cells. To address the in vivo relevance of this suppression, we utilized a well characterized [BALB/c →B6] mouse model of acute GVHD. Recipient B6 animals received 11Gy on day -1 and were injected with of 5 million host type SAHA treated or control DCs on days −1, 0, and +2. Mice were transplanted on day 0 with 2 x 106 T cells and 5 x 106 BM from either syngeneic B6 or allogeneic BALB/c donors. Injection of SAHA treated DCs resulted in significantly better survival (60% vs. 10%, P < 0.01) and significantly reduced serum levels of TNF-α, donor T cell expansion and histopathology of GVHD on day +7 after BMT compared to the controls. We conclue that HDAC inhibitors are novel immunomodulators that regulate DC function and might represent a novel strategy to prevent GVHD.

Author notes

Corresponding author

Sign in via your Institution