Abstract
Transforming Growth Factor β (TGF-β) is a myelosuppressive cytokine that has been implicated in the ineffective hematopoiesis seen in myelodysplastic syndromes (MDS). Overactivation of TGF-β signaling in this disease was demonstrated immunohistochemically by significantly higher nuclear SMAD2 phosphorylation observed in 20 MDS bone marrows when compared with 7 non MDS anemic controls (P < 0.0001, 2 Tailed T Test, Image Pro Plus software). This data along with high levels of membrane-bound and plasma TGF-β observed in MDS patients in previous studies support the development of therapeutics targeting the TGF-β signaling pathways in this disease. SD-208 is a novel, potent and specific inhibitor of TGF-β Receptor I (TGFβ-RI) kinase. We demonstrate that SD-208 blocks the phosphorylation of SMAD2 in hematopoietic progenitors which are at the colony forming unit-erythroid (CFU-E) stage of differentiation. SD-208 also abrogates the G0/G1 cell cycle arrest induced by TGF-β in bone marrow progenitors. SD-208 treatment leads to reversal of the myelosuppressive effects of TGF-β on erythroid and myeloid colony formation from primary human CD34+ cells. Selectivity of SD-208 in inhibiting TGF-β-mediated effects on hematopoiesis was supported by similar results observed with siRNAs targeting SMAD2, a major component of the TGF-b signaling pathway. Finally, the efficacy of SD-208 in MDS was evaluated by treating bone marrow mononuclear cells from 15 patients with early low grade MDS. SD-208 treatment led to dose-dependent increases in erythroid and myeloid colonies after 14 days of in vitro culture. The effect was most notable in patients with high levels of activated SMAD-2, as assessed by immunohistochemical staining of bone marrow biopsies. Stimulation of hematopoiesis in MDS-derived marrow culture by SD-208 demonstrates a novel concept and potential therapeutic role for TGFβ-RI inhibition in this disease. Supported by VISN-17 grant, Harris Methodist Foundation Grant and ASCO YIA to AV
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal