Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells including tumor and hematopoietic stem cells. Strong evidence indicates that NPM is involved in hematopoiesis and leukemic development. Here we report that NPM enhances the proliferative potential of hematopoietic stem/progenitor cells and increases cell survival upon stress challenge. Specifically, lin-Sca1+c-kit+ bone marrow cells transduced with retroviral vector expressing NPM exhibited higher proliferative rates in both short-term liquid culture and clonogenic progenitor cell assays, compared to the cells transduced with empty vector. Interestingly, NPM overexpression appears to inhibit differentiation of myeloid progenitors. Hematopoietic stem/progenitor cells infected with the NPM retrovirus expressed significantly lower levels of mature cell markers Gr-1 and Mac-1 compared to empty vector transduced cells, and majority of the NPM-overexpressing cells remained Sca1+C-Kit+ during the 5-day culture. Bone marrow transplantation experiments demonstrated that NPM overexpression increases long-term multi-lineage repopulating capacity of hematopoietic progenitors. We have not observed any evidence of proliferative disorders or leukemia in recipients transplanted with NPM-expressing progenitors thus far (4 months posttransplantation). Through cell-cycle profile analysis and single-cell division experiments, we showed that NPM overexpression induces rapid entry of hematopoietic progenitors into the cell cycle, probably via promoting G0/G1 to S transition. Furthermore, immunocytochemical and Western-blot analyses demonstrated that NPM-transduced cells expressed higher level of cyclin A compared to vector-transduced cells. Finally, overexpression of NPM significantly increased the survival of hematopoietic progenitors exposed to mitomycin C or hydrogen peroxide, suggesting that NPM can protect cells from DNA damage and oxidative stress. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of progenitor differentiation, cell cycle progression, and stress response.

Author notes

Corresponding author

Sign in via your Institution