Acute myeloid leukemia (AML) is a heterogeneous disease. Risk factors such as karyotype, FAB subtype, FLT3 status and response to induction therapy are determinants of outcome with current therapies. We hypothesize that array comparative genomic hybridization (CGH) will identify gene copy number changes that are determinants of outcome. Array CGH was performed on diagnostic bone marrow samples from patients on the COG study POG #9421. In order to determine regions of altered gene copy number, labeled genomic DNA samples were hybridized together with sex-matching normal human reference DNA to cDNA microarrays with 41,751 features (corresponding to 24,473 unique Unigene cluster IDs), arrays were obtained from the Stanford University Microarray Core Facility. Control hybridizations were performed to assess intra- and inter-experimental variability. We studied 70 samples with adequate high-quality DNA. Circular binary segmentation was used to distinguish discrete gene copy number transition points from chance noise events and to transform primary clone-by-clone data into genomic regions of equal copy number. Using gain/loss threshold, based on two-standard deviation range of control self-to-self distribution, novel gene amplifications and deletions were found in profiled samples. The highest alteration recurrence was observed for gains of chromosome 8 (21%) and losses of chromosome 6 (29%). The area of chromosome 8 which was found to be gained is notable for the presence of potential oncogenes such as ERK8. The deleted area of chromosome 6 is notable for the presence of potential regulators of oncogenesis: MDC1, DDR1, NFKBIL1, TNF, and BRD2. In summary, array CGH has identified novel areas of gene copy number gain and loss in this population of pediatric de novo AML patients. Further studies are needed to assess whether these genes are associated with outcome, known risk factors and whether they will provide insight into the heterogeneity of de novo AML.

Author notes

Corresponding author

Sign in via your Institution