Molecules of microbial origin, and synthetic derivatives of these molecules, have long been used for their immuno-adjuvant effect, and as the key sensors of microbial infection, Toll-like receptors (TLRs) are thought to be essential for adjuvanticity. To the contrary, we now demonstrate the existence of a robust, TLR-independent pathway for adjuvant effect: one that is actually far stronger than the TLR-dependent pathway. Activation of Toll-like receptors (TLRs) and the subsequent production of cytokines such as type I interferon leads to the maturation of dendritic cells (DCs) with upregulation of MHC molecules and costimulatory molecules such as CD40, CD80 and CD86, allowing for optimal interaction between DCs and T-cells. We have determined that TLR signal transduction is minimally dependent upon two adapter proteins, MyD88 and TRIF. In compound homozygous mutant (DKO) mice that lack functional MyD88 and TRIF, there is complete abrogation of all TLR signaling. Such animals therefore comprise a unique model with which to study TLR-independent immune responses. We have now used DKO mice to determine whether an adaptive immune response can be obtained in the absence of TLR signaling. As expected, adjuvanticity obtained via “classical” microbial adjuvants such as complete Freund’s adjuvant or LPS was completely absent in DKO mice. However, subcutaneous administration of syngeneic murine cells expressing ovalbumin and rendered apoptotic by exposure to ultraviolet light resulted in a strong T-cell response in vivo, with impressive production of interferon-g by CD8+ cells and efficient killing of EL-4 cells that expressed CD8-specific OVA peptides, both in wildtype and DKO mice. Adjuvanticity was observed only in the context of apoptosis, in that living cells, not exposed to ultraviolet light before injection, induced little or no response. Moreover, the mixture of the protein antigen with apoptotic cells was insufficient to induce an adaptive immune response; rather, only cells that expressed the protein prior to induction of apoptosis were stimulatory. These results indicate the existence of a specific, cell death-dependent mechanism for adjuvanticity that is TLR-independent and induced by endogenous molecules. We propose that this new adjuvant pathway is of fundamental importance to immune responses at large. We believe that it is required for initiation of the adaptive immune response witnessed in the context of allograft rejection, graft-versus-host disease, and autoimmune diseases as well.

Author notes

Corresponding author

Sign in via your Institution