Stem cells reside in a physical niche where a balance of signals controls their growth, differentiation and death. Niche components have generally been defined in terms of cells and positive effects on stem cell maintenance or expansion. Here we define a role for a matrix glycoprotein that provides a constraining function in the hematopoietic stem cell niche. Osteopontin (OPN) is an abundant glycoprotein in bone that can function as either cytokine or cell adhesion mediator. It is known to be produced by multiple cells types including osteoblasts, cells recently defined to be a regulatory component of the hematopoietic stem cell niche. Using studies combining OPN deficient mice and exogenous OPN, we demonstrate that OPN modifies primitive hematopoietic cell numbers and function. In OPN deficient mice, increased primitive cell numbers were observed in vivo associated with reduced progenitors and reduced primitive cell apoptotic fraction. To determine whether the effect of OPN deficiency was stroma dependent, we performed in vitro stem cell assays on OPN−/− stroma and observed greater LTC-IC supportive capacity compared with wild type stroma. Furthermore, OPN−/− recipients showed a significantly higher proportion of hematopoietic stem cells after transplantation of OPN+/+ bone marrow in comparison to wild-type recipients, indicating that the OPN null microenvironment was sufficient to increase stem cell number. A reduction in apoptotic fraction was seen in primitive cells in the OPN−/− recipient marrows. A role for OPN in apoptosis was confirmed by exogenous OPN in in-vitro studies. Hypothesizing that OPN may serve as a physiologic constraint on stem cell pool size, we compared OPN−/− with wild type animals following parathyroid hormone activation of the stem cell niche. The expansion of stem cells by PTH was superphysiologic in the absence of OPN. Therefore, OPN is a restricting element of the stem cell niche, limiting the number of stem cells produced by niche activation. Extracellular matrix components such as OPN may serve as modulable, regulatory participants in the stem cell niche.

Author notes

Corresponding author

Sign in via your Institution