Acute myeloid leukemia (AML) cells are poorly immunogenic and release soluble factors inhibiting T-cell function. AML-derived dendritic cells (AML-DCs) have better antigen presentation capacity than leukemic blasts but share with AML cells some immunosuppressive features. In this study, we show that AML-DCs generated from CD14 AML samples (which represent 80% of total AML patients) are defective in IL-12 production. We, then, transfected CD14-derived AML-DCs with IL-12 gene through the novel non-viral method nucleofection. IL-12 gene-nucleofected AML-DCs produce significant amount of IL-12 while maintain leukemia-specific karyotype, DC-like phenotype and function. In presence of the supernatant from the human leukemic cell line K562, allogeneic T-cell proliferation and interferon (IFN)-γ production induced by mock-transduced AML-DCs are significantly reduced. This effect is mainly directed on T cells, since AML-DC phenotype and cytokine production are not affected by leukemic supernatant. However, when stimulated by IL-12-producing AML-DCs, T cells produce higher concentrations of IFN-γ, thus maintaining a Th1 cytokine profile. In conclusion, IL-12 gene can be expressed into AML-DCs defective in endogenous IL-12 production by using a novel non-viral method which does not modify their phenotypical, cytogenetic and functional features. IL-12 gene expression into AML-DC counteracts the inhibitory effect of leukemic microenvironment on T lymphocytes

Author notes

Corresponding author

Sign in via your Institution