The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep mechanism. The viral envelope glycoproteins (env) binds first to CD4 and subsequently interacts with the V3 loop with a chemokine receptor, CCR5 or CXCR4, triggering the fusion event. Several findings suggest that viruses using CCR5 for entry (R5-tropic HIV-1) is the predominant species transmitted among patients. Importantly, CCR5 expression levels determine disease progression. CCR5 does not seem to be necessary for normal cell function, since individuals with a homozygous mutation (Δ32) do not appear to have clinical, immune alterations. Furthermore, these individuals are highly protected against transmission of R5-tropic HIV-1. Therefore, intervention strategies aimed at altering or blocking CCR5 expression may be beneficial for cellular protection and provide a clinical benefit against HIV-1 infection. We have constructed an HIV-1 derived vector, CAD-R5, expressing an intracellular single-chain antibody (intrabody) specific for CCR5 coupled to a KDEL endoplasmic reticulum retention signal. Intrabody expressing primary T-cells efficiently disrupted CCR5 cell surface expression with a 4.3-fold reduction in CCR5 mean fluorescence intensity (MFI) as compared to the control vector without the intrabody gene (7.9 and 33.6 MFI, respectfully). CAD-R5 transduced primary CD4 T-cells expressing the intrabody gene were resistant to R5-tropic HIV infection as shown by a 50 to 60-fold reduction in HIV-1 p24 concentration. Moreover, intrabody gene expressing cells demonstrated a selective advantage and enriched by 6.4-fold in a population of infected cells as compared to uninfected or infected cells containing vector without the intrabody gene. The SCID-human mouse model, produced by conjoining fetal human thymus and liver under the renal capsule, has become a staple for in vivo testing of T cell anti-retroviral therapy. When CAD-R5 transduced, fetal liver derived CD34+ stem cells were used for reconstitution of the human implants in SCID-hu mice (n = 2, 2 groups), 6-weeks later the human thymi displayed an average of 25% reporter gene expressing T cells. Thymocyte development was not altered by vector integration or loss of CCR5 cell surface expression as determined by the CD4+/CD8+ staining profile. Importantly, CCR5 intrabody expressing thymocytes were also highly resistant to ex vivo R5-tropic HIV-1 challenge with a 3-fold reduction in viral load. These results validate the efficacy of lentiviral delivered CCR5 intrabody mediated protection from R5-tropic HIV-1. The findings also underscore the potential advantage of intrabody gene delivery to CD34+ stem cells, which allows differentiation of protected T cell progeny.

Author notes

Corresponding author

Sign in via your Institution