Background. Suicide gene therapy is a promising approach for the safe exploitation of the graft-versus-leukemia effect. The insertion of Herpes Simplex Virus thymidine kinase confers an inducible suicidal phenotype upon ganciclovir (GCV) administration, thus enabling the selective elimination of T lymphocytes causing graft-versus-host disease (GvHD). Despite clinical and experimental studies substantiating the efficacy of the strategy, protocols to generate genetically modified cells (GMC) has been shown to reduce alloreactivity. The physiological CD4/CD8 ratio is inverted and GMC are enriched for “effector memory” T cells. Co-stimulation through CD28 has been shown to preserve the functional phenotype GMC. XcyteTM Dynabeads®, 4,5 μm anti-CD3 and anti-CD28 coated paramagnetic beads (bCD3/CD28) sustain T cell proliferation and can be used to obtain GMC.

Aim. To in vitro characterize human suicide GMC generated with bCD3/CD28 GMC (XcyteTM Dynabeads®, Xcyte Therapies, Inc.) and to test their ability to engraft and cause GvHD in a xenogeneic mouse model.

Results. bCD3/CD28 (bead to T cell ratio 3:1) are a potent stimulus for cell cycle entry for both CD4+ and CD8+ human T cells. This permits retroviral transduction (SFCMM#3 vector, Molmed SpA) and preservation of CD4/CD8 ratio. GMC generated with bCD3/CD28 are enriched for “central memory” T cells (CD45RA+CCR7+ 34±7%, CD28+CD27+ 67±12%, intracytoplasmic IL-2+ 14±5%, IFN-γ+ 10±3% and perforin+ 7±3%) when compared with GMC generated with anti-CD3 (CD3) alone (CD45RA+CCR7+ 17±4%, CD28+CD27+ 21±5%, intracytoplasmic IL-2+ 5±3%, IFN-γ+ 52±11% and perforin+ 22±4%). bCD3/CD28 GMC resist activation induced cell death (AxV+PI+ 12±3% vs 42±13% for CD3 GMC). When injected i.p. in NOD/SCID mice conditioned with irradiation and anti-NK depleting antibodies bCD3/CD28 GMC engraft with a faster kinetics (human chimerism at 2 weeks 14±7%) than observed for for CD3 GMC (5±2%). In this model, mice injected with unmodified human lymphocytes develop signs of xenogeneic (X-) GvHD (ruffled fur, hunched back, weight loss and finally death with massive accumulation of human T cell in lymphoid organs) by week 5. X-GvHD observed in mice injected with CD3 GMC has a significant slower course with a proportion of mice surviving week 8. X-GvHD caused by bCD3/CD28 GMC kill all the animals by week 7 (p<0,05 vs CD3 GMC). In mice with established X-GvHD caused by GMC treatment with GCV leads to a reduction in circulating GMC and modulates X-GvHD. GCV administration is not able to cure animals suffering from X-GvHD caused by unmodified T lymphocytes.

Conclusions. GMC generated with bCD3/CD28 display a “central memory” functional phenotype and are significantly more efficient than CD3 GMC in causing lethal X-GvHD. GCV administration is able to abrogate X-GvHD caused by GMC. These results validate a tool for the generation of human suicide GMC with high alloreactive potential to be utilized in clinical protocols of adoptive immunotherapy of tumors.

Author notes

Corresponding author

Sign in via your Institution