Abstract 1166

Fanconi anemia (FA) is a genetic disorder characterized by genomic instability, bone marrow (BM) failure and predisposition to cancer. However, FA mouse models do not show spontaneous genetic instability. Previous study shows that FOXO3a is associated with the FA pathway through oxidative stress-specific interaction with FANCD2. To address the consequence of loss of FOXO3a function in FA hematopoiesis, we generated Foxo3a-/-Fancd2-/- and Foxo3a-/-Fancc-/- double-knockout (DKO) mice by crossing Foxo3a+/− with Fancd2+/− or Fancc+/−; mice. Reactive oxygen species are increased in low-density BM (LDBM) cells isolated from DKO mice compared to those from single KO (SKO) or wt mice. Analysis of hematologic parameters shows significantly increased number of nucleate cells and high ratio of eosinophils in peripheral blood of DKO mice. CFU assay shows more progenitor cells in peripheral blood isolated from DKO mice. Moreover, BM progenitor cells from DKO mice exhibit lower adhesion but higher migration activity, compared to those from wt or SKO mice. Consistent with this, Cdc42 pull-down assay shows lower Cdc42 activity in DKO LDBM cells than in wt or SKO cells, indicating that decreased Cdc42 may contribute to the observed aberrant adhesion and migration activities. DKO mice show significant decrease in primitive progenitor (Lin-Sca-1+c-kit+; LSK) cells, increase in BrdU+ and G1-phase LSK cells, and impaired repopulating capacity after competitive BM transplantation, which can be attenuated by the anti-oxidant Quercetin. Taken together, loss of Foxo3a in FA mice results in FA-like syndrome, which may be resulted from increased reactive oxygen species accumulation.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution