Umbilical cord blood (UCB) is considered as an attractive alternative source of hematopoietic stem cells for allogeneic stem cell transplantations in patients who lack HLA-matched donors. However, the low cell dose adversely affects the speed of hematopoietic recovery and therefore limits the application of UCB transplantation in adults. Although ex-vivo expansion of cord blood cells has been explored as a strategy to increase the cell dose, compromised engraftment potential of expanded cells has been demonstrated. Another approach to overcome cell dose limitations is transplantation of multiple, unrelated UCB units. To investigate the effect of multiple cord transplantation on engraftment, NOD/SCID mice were transplanted with human hematopoietic progenitor cells (CD34+) derived from two UCB units with HLA disparity. During the first six weeks after transplantation the number of human platelets in peripheral blood was quantified by flow cytometry. Six weeks after transplantation, the mice were sacrificed and the percentage and donor origin of human CD45+ cells in blood, and in bone marrow was determined by flow cytometry. Transplantation of CD34+ cells derived from two UCB donors resulted in significantly higher number of human platelets in peripheral blood than transplantation of CD34+ cells from either donor alone, ranging from 3.92x106/ml to 10.29x106/ml (mean 6.4x106 ± 2.55x106/ml) and 0.11x106/ml to 3.12.106/ml (mean 1.42x106 ± 1.17x106/ml), respectively. Furthermore, the overall human cell engraftment level in bone marrow after double cord blood transplantation ranged from 7.01% to 64.34% (mean 29.6 ± 21.5%) a nearly 7-fold increase compared to single cord blood transplantation ranging from 0.27% to 13.5% (mean 4.6 ± 3.8%) Although consistently higher engraftment levels were reached after double cord blood transplantation, two different patterns were observed: in 2 out of 4 experiments cells from one donor predominated the engraftment (ratio 3:1), while in two other experiments the two units contributed equally to BM engraftment. The mechanism underlying these effects are <S>is</S> not yet clear. It is not very likely that the single donor predominance results from an unequal amount of hematopoietic stem cells in the cord blood units because each cord blood showed comparable levels of engraftment as a single unit. Alternatively, the unequal engraftment may result from an immunological competition or a graft versus graft stimulatory effect between the cords during the engraftment process and further studies are required to determine if the contribution of both units is dependent on the degree of HLA matching between the two cords. Taken together, these results demonstrate that double cord blood transplantation may represent a means of achieving increased engraftment, making multiple cord blood transplantation a promising strategy to improve the outcome of UCB transplantation. Studies are underway to unravel the mechanisms underlying the enhanced engraftment.

Author notes

Corresponding author

Sign in via your Institution