Abstract

Starting with imatinib, tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal blood cancer into a chronic condition. As patients with access to advanced CML care have an almost normal life expectancy, there is a perception that CML is a problem of the past, and one should direct research resources elsewhere. However, a closer look at the current CML landscape reveals a more nuanced picture. Most patients still require life-long TKI therapy to avoid recurrence of active CML. Chronic TKI toxicity and the high costs of the well-tolerated agents remain challenging. Progression to blast phase still occurs, particularly in socioeconomically disadvantaged parts of the world, where high-risk CML at diagnosis is common. Here, we review the prospects of further improving TKIs to achieve optimal suppression of BCR::ABL1 kinase activity, the potential of combining different classes of TKIs, and the current state of BCR::ABL1 degraders. We cover combination therapy approaches to address TKI resistance in the setting of residual leukemia and in advanced CML. Despite the unprecedented success of TKIs in CML, more work is needed to truly finish the job, and we hope to stimulate innovative research aiming to achieve this goal.

1.
Bower
H
,
Björkholm
M
,
Dickman
PW
,
Höglund
M
,
Lambert
PC
,
Andersson
TM
.
Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population
.
J Clin Oncol
.
2016
;
34
(
24
):
2851
-
2857
.
2.
Hochhaus
A
,
Wang
J
,
Kim
DW
, et al
.
Asciminib in newly diagnosed chronic myeloid leukemia
.
N Engl J Med
.
2024
;
391
(
10
):
885
-
898
.
3.
Malhotra
H
,
Radich
J
,
Garcia-Gonzalez
P
.
Meeting the needs of CML patients in resource-poor countries
.
Hematology Am Soc Hematol Educ Program
.
2019
;
2019
(
1
):
433
-
442
.
4.
Mahon
FX
,
Rea
D
,
Guilhot
J
, et al
.
Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial
.
Lancet Oncol
.
2010
;
11
(
11
):
1029
-
1035
.
5.
Corbin
AS
,
Agarwal
A
,
Loriaux
M
,
Cortes
J
,
Deininger
MW
,
Druker
BJ
.
Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity
.
J Clin Invest
.
2011
;
121
(
1
):
396
-
409
.
6.
Hamilton
A
,
Helgason
GV
,
Schemionek
M
, et al
.
Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival
.
Blood
.
2012
;
119
(
6
):
1501
-
1510
.
7.
Hochhaus
A
,
Saglio
G
,
Hughes
TP
, et al
.
Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial
.
Leukemia
.
2016
;
30
(
5
):
1044
-
1054
.
8.
Cortes
JE
,
Saglio
G
,
Kantarjian
HM
, et al
.
Final 5-year study results of DASISION: the Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial
.
J Clin Oncol
.
2016
;
34
(
20
):
2333
-
2340
.
9.
Lipton
JH
,
Chuah
C
,
Guerci-Bresler
A
, et al
.
Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial
.
Lancet Oncol
.
2016
;
17
(
5
):
612
-
621
.
10.
Cortes
JE
,
Sasaki
K
,
Kim
DW
, et al
.
Asciminib monotherapy in patients with chronic-phase chronic myeloid leukemia with the T315I mutation after ≥1 prior tyrosine kinase inhibitor: 2-year follow-up results
.
Leukemia
.
2024
;
38
(
7
):
1522
-
1533
.
11.
Yeung
DT
,
Shanmuganathan
N
,
Reynolds
J
, et al
.
Asciminib monotherapy as frontline treatment of chronic-phase chronic myeloid leukemia: results from the ASCEND study
.
Blood
.
2024
;
144
(
19
):
1993
-
2001
.
12.
Wylie
AA
,
Schoepfer
J
,
Jahnke
W
, et al
.
The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1
.
Nature
.
2017
;
543
(
7647
):
733
-
737
.
13.
Douxfils
J
,
Haguet
H
,
Mullier
F
,
Chatelain
C
,
Graux
C
,
Dogné
JM
.
Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis
.
JAMA Oncol
.
2016
;
2
(
5
):
625
-
632
.
14.
Hochhaus
A
,
Réa
D
,
Boquimpani
C
, et al
.
Asciminib vs bosutinib in chronic-phase chronic myeloid leukemia previously treated with at least two tyrosine kinase inhibitors: longer-term follow-up of ASCEMBL
.
Leukemia
.
2023
;
37
(
3
):
617
-
626
.
15.
Rangwala
AM
,
Berger
BT
,
Robers
MB
,
Knapp
S
,
Seeliger
MA
.
Resistance to kinase inhibition through shortened target engagement
.
Mol Cell Oncol
.
2022
;
9
(
1
):
2029999
.
16.
Shah
NP
,
Kasap
C
,
Weier
C
, et al
.
Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis
.
Cancer Cell
.
2008
;
14
(
6
):
485
-
493
.
17.
Snead
JL
,
O'Hare
T
,
Adrian
LT
, et al
.
Acute dasatinib exposure commits Bcr-Abl-dependent cells to apoptosis
.
Blood
.
2009
;
114
(
16
):
3459
-
3463
.
18.
Shah
NP
,
Kantarjian
HM
,
Kim
DW
, et al
.
Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia
.
J Clin Oncol
.
2008
;
26
(
19
):
3204
-
3212
.
19.
Gener-Ricos
G
,
Haddad
FG
,
Sasaki
K
, et al
.
Low-dose dasatinib (50 mg daily) frontline therapy in newly diagnosed chronic phase chronic myeloid leukemia: 5-year follow-up results
.
Clin Lymphoma Myeloma Leuk
.
2023
;
23
(
10
):
742
-
748
.
20.
Roskoski
R
.
Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes
.
Pharmacol Res
.
2016
;
103
:
26
-
48
.
21.
Park
H
,
Hong
S
,
Kim
J
,
Hong
S
.
Discovery of picomolar ABL kinase inhibitors equipotent for wild type and T315I mutant via structure-based de novo design
.
J Am Chem Soc
.
2013
;
135
(
22
):
8227
-
8237
.
22.
Huron
DR
,
Gorre
ME
,
Kraker
AJ
,
Sawyers
CL
,
Rosen
N
,
Moasser
MM
.
A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants
.
Clin Cancer Res
.
2003
;
9
(
4
):
1267
-
1273
.
23.
Shah
NP
,
Tran
C
,
Lee
FY
,
Chen
P
,
Norris
D
,
Sawyers
CL
.
Overriding imatinib resistance with a novel ABL kinase inhibitor
.
Science
.
2004
;
305
(
5682
):
399
-
401
.
24.
O'Hare
T
,
Shakespeare
WC
,
Zhu
X
, et al
.
AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance
.
Cancer Cell
.
2009
;
16
(
5
):
401
-
412
.
25.
Quach
D
,
Tang
G
,
Anantharajan
J
, et al
.
Strategic design of catalytic lysine-targeting reversible covalent BCR-ABL inhibitors
.
Angew Chem Int Ed Engl
.
2021
;
60
(
31
):
17131
-
17137
.
26.
Chen
P
,
Sun
J
,
Zhu
C
, et al
.
Cell-active, reversible, and irreversible covalent inhibitors that selectively target the catalytic lysine of BCR-ABL kinase
.
Angew Chem Int Ed Engl
.
2022
;
61
(
26
):
e202203878
.
27.
Sun
J
,
Lou
L
,
Zhu
C
, et al
.
Rationally designed BCR-ABL kinase inhibitors for improved leukemia treatment via covalent and pro-/dual-drug targeting strategies
.
J Adv Res
.
2024
.
28.
Jiang
Q
,
Li
Z
,
Qin
Y
, et al
.
Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial
.
J Hematol Oncol
.
2022
;
15
(
1
):
113
.
29.
Eide
CA
,
Zabriskie
MS
,
Savage Stevens
SL
, et al
.
Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants
.
Cancer Cell
.
2019
;
36
(
4
):
431
-
443.e5
.
30.
Antelope
O
,
Vellore
NA
,
Pomicter
AD
, et al
.
BCR-ABL1 tyrosine kinase inhibitor K0706 exhibits preclinical activity in Philadelphia chromosome-positive leukemia
.
Exp Hematol
.
2019
;
77
:
36
-
40.e2
.
31.
Cortes
JE
,
Saikia
T
,
Kim
D-W
, et al
.
Efficacy and safety of vodobatinib in patients (pts) with chronic phase Philadelphia positive chronic myeloid leukemia (Ph+ CML): a sub group analysis by lines of tyrosine kinase inhibitor (TKI) therapy [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
205
-
207
.
32.
Cortes
JE
,
Saikia
T
,
Kim
D-W
, et al
.
Phase 1 trial of vodobatinib, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI): activity in CML chronic phase patients failing TKI therapies including ponatinib [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
51
-
52
.
33.
Shi
Y
,
Jiang
Q
,
Li
L
, et al
.
Tgrx-678, a novel allosteric inhibitor of BCR-ABL1, demonstrates preclinical anti-leukemia activity, high oral bioavailability and synergism with ponatinib to suppress the highly resistant compound mutations [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
2807
.
34.
Jiang
Q
,
Zhang
Y
,
Wang
Q
, et al
.
Safety and efficacy of Tgrx-678, a potent BCR-ABL allosteric inhibitor in patients with tyrosine kinase inhibitor (TKI) resistant/refractory chronic myeloid leukemia (CML): preliminary results of phase I study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
867
.
35.
M Parsons
B
,
Jasper
JR
,
Jones
C
.
Tern-701 (HS-10382) is a potent inhibitor of BCR::ABL1 and is synergistic with active site tyrosine kinase inhibitors [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
5757
.
36.
Zabriskie
MS
,
Eide
CA
,
Tantravahi
SK
, et al
.
BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia
.
Cancer Cell
.
2014
;
26
(
3
):
428
-
442
.
37.
Gleixner
KV
,
Filik
Y
,
Berger
D
, et al
.
Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1 (T315I)-compound mutations
.
Am J Cancer Res
.
2021
;
11
(
9
):
4470
-
4484
.
38.
Kim
C
,
Ludewig
H
,
Hadzipasic
A
,
Kutter
S
,
Nguyen
V
,
Kern
D
.
A biophysical framework for double-drugging kinases
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
34
):
e2304611120
.
39.
Vajpai
N
,
Strauss
A
,
Fendrich
G
, et al
.
Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib
.
J Biol Chem
.
2008
;
283
(
26
):
18292
-
18302
.
40.
Cortes
J
,
Lang
F
,
Rea
D
, et al
.
Asciminib (ASC) in combination with imatinib (IMA), nilotinib (NIL), or dasatinib (DAS) may be a potential treatment (Tx) option in patients (Pts) with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase or accelerated phase (Ph+ CML-CP/AP): final results from the asciminib phase 1 study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
868
.
41.
Hughes
TP
,
Mauro
MJ
,
Cortes
JE
, et al
.
Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure
.
N Engl J Med
.
2019
;
381
(
24
):
2315
-
2326
.
42.
Ernst
T
,
Le Coutre
P
,
Crysandt
M
, et al
.
S156: frontline asciminib combination in chronic phase chronic myeloid leukemia patients
.
Hemasphere
.
2023
;
7
(
S3
):
e34543a6
.
43.
Zerbit
J
,
Tamburini
J
,
Goldwirt
L
, et al
.
Asciminib and ponatinib combination in Philadelphia chromosome-positive acute lymphoblastic leukemia
.
Leuk Lymphoma
.
2021
;
62
(
14
):
3558
-
3560
.
44.
Eide
CA
,
Brewer
D
,
Xie
T
, et al
.
Overcoming clinical BCR::ABL1 compound mutant resistance with combined ponatinib and asciminib therapy
.
Cancer Cell
.
2024
;
42
(
9
):
1486
-
1488
.
45.
Cortes
JE
,
Baccarani
M
,
Guilhot
F
, et al
.
Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study
.
J Clin Oncol
.
2010
;
28
(
3
):
424
-
430
.
46.
Hehlmann
R
,
Lauseker
M
,
Jung-Munkwitz
S
, et al
.
Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-{alpha} in newly diagnosed chronic myeloid leukemia
.
J Clin Oncol
.
2011
;
29
(
12
):
1634
-
1642
.
47.
Kantarjian
HM
,
Hochhaus
A
,
Saglio
G
, et al
.
Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial
.
Lancet Oncol
.
2011
;
12
(
9
):
841
-
851
.
48.
Cortes
JE
,
Kim
DW
,
Kantarjian
HM
, et al
.
Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial
.
J Clin Oncol
.
2012
;
30
(
28
):
3486
-
3492
.
49.
Cortes
JE
,
Gambacorti-Passerini
C
,
Deininger
MW
, et al
.
Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial
.
J Clin Oncol
.
2018
;
36
(
3
):
231
-
237
.
50.
Jabbour
E
,
Sasaki
K
,
Haddad
FG
, et al
.
Low-dose dasatinib 50 mg/day versus standard-dose dasatinib 100 mg/day as frontline therapy in chronic myeloid leukemia in chronic phase: a propensity score analysis
.
Am J Hematol
.
2022
;
97
(
11
):
1413
-
1418
.
51.
Saydan
B
,
Özmen
D
,
Eşkazan
AE
.
Is 50 mg/day the new standard dose of dasatinib in newly diagnosed patients with chronic myeloid leukemia in chronic phase?
.
Expert Rev Hematol
.
2024
;
17
(
7
):
275
-
277
.
52.
Shin
DY
,
Park
S
,
Jang
E
, et al
.
Early dose reduction of dasatinib does not compromise clinical outcomes in patients with chronic myeloid leukemia: a comparative analysis of two prospective trials
.
Leuk Res
.
2024
;
143
:
107542
.
53.
Cortes
J
,
Apperley
J
,
Lomaia
E
, et al
.
Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial
.
Blood
.
2021
;
138
(
21
):
2042
-
2050
.
54.
Zhao
X
,
Ghaffari
S
,
Lodish
H
,
Malashkevich
VN
,
Kim
PS
.
Structure of the Bcr-Abl oncoprotein oligomerization domain
.
Nat Struct Biol
.
2002
;
9
(
2
):
117
-
120
.
55.
Smith
KM
,
Yacobi
R
,
Van Etten
RA
.
Autoinhibition of Bcr-Abl through its SH3 domain
.
Mol Cell
.
2003
;
12
(
1
):
27
-
37
.
56.
Smith
KM
,
Van Etten
RA
.
Activation of c-Abl kinase activity and transformation by a chemical inducer of dimerization
.
J Biol Chem
.
2001
;
276
(
26
):
24372
-
24379
.
57.
Woessner
DW
,
Eiring
AM
,
Bruno
BJ
, et al
.
A coiled-coil mimetic intercepts BCR-ABL1 dimerization in native and kinase-mutant chronic myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1668
-
1675
.
58.
Lima
MCP
,
Hornsby
BD
,
Lim
CS
,
Cheatham
TE
.
Molecular modeling of single- and double-hydrocarbon-stapled coiled-coil inhibitors against Bcr-Abl: toward a treatment strategy for CML
.
J Phys Chem B
.
2024
;
128
(
27
):
6476
-
6491
.
59.
Lima
MCP
,
Hornsby
BD
,
Lim
CS
,
Cheatham
TE
.
Computational modeling of stapled coiled-coil inhibitors against Bcr-Abl: toward a treatment strategy for CML
.
bioRxiv
.
Preprint posted online 17 November 2023
.
60.
Cornillie
SP
,
Bruno
BJ
,
Lim
CS
,
Cheatham
TE
.
Computational modeling of stapled peptides toward a treatment strategy for CML and broader implications in the design of lengthy peptide therapeutics
.
J Phys Chem B
.
2018
;
122
(
14
):
3864
-
3875
.
61.
Voncken
JW
,
van Schaick
H
,
Kaartinen
V
, et al
.
Increased neutrophil respiratory burst in bcr-null mutants
.
Cell
.
1995
;
80
(
5
):
719
-
728
.
62.
Cruz-Rodriguez
N
,
Tang
H
,
Bateman
B
,
Tang
W
,
Deininger
M
.
BCR::ABL1 proteolysis-targeting chimeras (PROTACs): the new frontier in the treatment of Ph(+) leukemias?
.
Leukemia
.
2024
;
38
(
9
):
1885
-
1893
.
63.
Ramaraj
P
,
Singh
H
,
Niu
N
, et al
.
Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors
.
Cancer Res
.
2004
;
64
(
15
):
5322
-
5331
.
64.
McWhirter
JR
,
Wang
JY
.
An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias
.
EMBO J
.
1993
;
12
(
4
):
1533
-
1546
.
65.
Neviani
P
,
Harb
JG
,
Oaks
JJ
, et al
.
PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells
.
J Clin Invest
.
2013
;
123
(
10
):
4144
-
4157
.
66.
Hantschel
O
,
Warsch
W
,
Eckelhart
E
, et al
.
BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia
.
Nat Chem Biol
.
2012
;
8
(
3
):
285
-
293
.
67.
Wu
J
,
Meng
F
,
Lu
H
, et al
.
Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells
.
Blood
.
2008
;
111
(
7
):
3821
-
3829
.
68.
Donato
NJ
,
Wu
JY
,
Stapley
J
, et al
.
BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571
.
Blood
.
2003
;
101
(
2
):
690
-
698
.
69.
Samanta
A
,
Perazzona
B
,
Chakraborty
S
, et al
.
Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia
.
Leukemia
.
2011
;
25
(
3
):
463
-
472
.
70.
Janmaat
ML
,
Kruyt
FA
,
Rodriguez
JA
,
Giaccone
G
.
Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways
.
Clin Cancer Res
.
2003
;
9
(
6
):
2316
-
2326
.
71.
Wee
P
,
Wang
Z
.
Epidermal growth factor receptor cell proliferation signaling pathways
.
Cancers (Basel)
.
2017
;
9
(
5
):
52
.
72.
Thomas
R
,
Weihua
Z
.
Rethink of EGFR in cancer with its kinase independent function on board
.
Front Oncol
.
2019
;
9
:
800
.
73.
Weihua
Z
,
Tsan
R
,
Huang
WC
, et al
.
Survival of cancer cells is maintained by EGFR independent of its kinase activity
.
Cancer Cell
.
2008
;
13
(
5
):
385
-
393
.
74.
Dhami
K
,
Chakraborty
A
,
Gururaja
TL
, et al
.
Kinase-deficient BTK mutants confer ibrutinib resistance through activation of the kinase HCK
.
Sci Signal
.
2022
;
15
(
736
):
eabg5216
.
75.
Cope
NJ
,
Novak
B
,
Liu
Z
, et al
.
Analyses of the oncogenic BRAF(D594G) variant reveal a kinase-independent function of BRAF in activating MAPK signaling
.
J Biol Chem
.
2020
;
295
(
8
):
2407
-
2420
.
76.
Kung
JE
,
Jura
N
.
Structural basis for the non-catalytic functions of protein kinases
.
Structure
.
2016
;
24
(
1
):
7
-
24
.
77.
Bali
P
,
Pranpat
M
,
Bradner
J
, et al
.
Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors
.
J Biol Chem
.
2005
;
280
(
29
):
26729
-
26734
.
78.
Bhatia
S
,
Diedrich
D
,
Frieg
B
, et al
.
Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response
.
Blood
.
2018
;
132
(
3
):
307
-
320
.
79.
Koleske
AJ
,
Gifford
AM
,
Scott
ML
, et al
.
Essential roles for the Abl and Arg tyrosine kinases in neurulation
.
Neuron
.
1998
;
21
(
6
):
1259
-
1272
.
80.
Zhao
H
,
Pomicter
AD
,
Eiring
AM
, et al
.
MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis
.
Blood
.
2022
;
139
(
5
):
761
-
778
.
81.
Ko
TK
,
Javed
A
,
Lee
KL
, et al
.
An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia
.
Blood
.
2020
;
135
(
26
):
2337
-
2353
.
82.
Sweet
K
,
Hazlehurst
L
,
Sahakian
E
, et al
.
A phase I clinical trial of ruxolitinib in combination with nilotinib in chronic myeloid leukemia patients with molecular evidence of disease
.
Leuk Res
.
2018
;
74
:
89
-
96
.
83.
Sweet KO
M
,
Tantravahi
S
,
Radich
J
, et al
. A phase 2, randomized trial of ruxolitinib in addition to BCR::ABL1 TKIs in CML patients with molecular evidence of disease (SWOG TRIAL S1712).
European Hematology Association Annual Meeting 2024
.
2024
.
84.
Hochhaus
A
,
Burchert
A
,
Saussele
S
, et al
.
Nilotinib vs nilotinib plus pegylated interferon α (Peg-IFN) induction and nilotinib or Peg-IFN maintenance therapy for newly diagnosed BCR-ABL1 positive chronic myeloid leukemia patients in chronic phase (TIGER study): the addition of Peg-IFN is associated with higher rates of deep molecular response [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
495
.
85.
Burchert
A
,
Saussele
S
,
Eigendorff
E
, et al
.
Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia
.
Leukemia
.
2015
;
29
(
6
):
1331
-
1335
.
86.
Krishnan
V
,
Schmidt
F
,
Nawaz
Z
, et al
.
A single-cell atlas identifies pretreatment features of primary imatinib resistance in chronic myeloid leukemia
.
Blood
.
2023
;
141
(
22
):
2738
-
2755
.
87.
Warfvinge
R
,
Geironson Ulfsson
L
,
Dhapola
P
, et al
.
Single cell multi-omics analysis of chronic myeloid leukemia links cellular heterogeneity to therapy response
.
bioRxiv
.
Preprint posted online 18 August 2023
.
88.
Jiang
Q
,
Crews
LA
,
Barrett
CL
, et al
.
ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
3
):
1041
-
1046
.
89.
Bellodi
C
,
Lidonnici
MR
,
Hamilton
A
, et al
.
Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells
.
J Clin Invest
.
2009
;
119
(
5
):
1109
-
1123
.
90.
Baquero
P
,
Dawson
A
,
Mukhopadhyay
A
, et al
.
Targeting quiescent leukemic stem cells using second generation autophagy inhibitors
.
Leukemia
.
2019
;
33
(
4
):
981
-
994
.
91.
Horne
GA
,
Stobo
J
,
Kelly
C
, et al
.
A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease
.
Leukemia
.
2020
;
34
(
7
):
1775
-
1786
.
92.
Goff
DJ
,
Court Recart
A
,
Sadarangani
A
, et al
.
A pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition
.
Cell Stem Cell
.
2013
;
12
(
3
):
316
-
328
.
93.
Carter
BZ
,
Mak
PY
,
Mu
H
, et al
.
Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells
.
Sci Transl Med
.
2016
;
8
(
355
):
355ra117
.
94.
Jabbour
E
,
Haddad
FG
,
Sasaki
K
, et al
.
Combination of dasatinib and venetoclax in newly diagnosed chronic phase chronic myeloid leukemia
.
Cancer
.
2024
;
130
(
15
):
2652
-
2659
.
95.
Short
NJ
,
Nguyen
D
,
Jabbour
E
, et al
.
Decitabine, venetoclax, and ponatinib for advanced phase chronic myeloid leukaemia and Philadelphia chromosome-positive acute myeloid leukaemia: a single-arm, single-centre phase 2 trial
.
Lancet Haematol
.
2024
;
11
(
11
):
e839
-
e849
.
96.
Hurtz
C
,
Hatzi
K
,
Cerchietti
L
, et al
.
BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia
.
J Exp Med
.
2011
;
208
(
11
):
2163
-
2174
.
97.
Agarwal
P
,
Isringhausen
S
,
Li
H
, et al
.
Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells
.
Cell Stem Cell
.
2019
;
24
(
5
):
769
-
784.e6
.
98.
Scott
MT
,
Korfi
K
,
Saffrey
P
, et al
.
Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition
.
Cancer Discov
.
2016
;
6
(
11
):
1248
-
1257
.
99.
Xie
H
,
Peng
C
,
Huang
J
, et al
.
Chronic myelogenous leukemia- initiating cells require polycomb group protein EZH2
.
Cancer Discov
.
2016
;
6
(
11
):
1237
-
1247
.
100.
Zhang
J
,
Adrian
FJ
,
Jahnke
W
, et al
.
Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors
.
Nature
.
2010
;
463
(
7280
):
501
-
506
.
101.
Zhao
C
,
Chen
A
,
Jamieson
CH
, et al
.
Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia
.
Nature
.
2009
;
458
(
7239
):
776
-
779
.
102.
Dierks
C
,
Beigi
R
,
Guo
GR
, et al
.
Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation
.
Cancer Cell
.
2008
;
14
(
3
):
238
-
249
.
103.
Ye
D
,
Wolff
N
,
Li
L
,
Zhang
S
,
Ilaria
RL
.
STAT5 signaling is required for the efficient induction and maintenance of CML in mice
.
Blood
.
2006
;
107
(
12
):
4917
-
4925
.
104.
Traer
E
,
MacKenzie
R
,
Snead
J
, et al
.
Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors
.
Leukemia
.
2012
;
26
(
5
):
1140
-
1143
.
105.
Gallipoli
P
,
Cook
A
,
Rhodes
S
, et al
.
JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo
.
Blood
.
2014
;
124
(
9
):
1492
-
1501
.
106.
Eiring
AM
,
Kraft
IL
,
Page
BD
,
O'Hare
T
,
Gunning
PT
,
Deininger
MW
.
STAT3 as a mediator of BCR-ABL1-independent resistance in chronic myeloid leukemia
.
Leuk Suppl
.
2014
;
3
(
suppl 1
):
S5
-
S6
.
107.
Chen
Y
,
Hu
Y
,
Zhang
H
,
Peng
C
,
Li
S
.
Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia
.
Nat Genet
.
2009
;
41
(
7
):
783
-
792
.
108.
Carter
BZ
,
Mak
PY
,
Mu
H
, et al
.
Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model
.
Haematologica
.
2020
;
105
(
5
):
1274
-
1284
.
109.
Scott
MT
,
Liu
W
,
Mitchell
R
, et al
.
Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease
.
Nat Commun
.
2024
;
15
(
1
):
651
.
110.
Zhang
B
,
Nguyen
LXT
,
Li
L
, et al
.
Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia
.
Nat Med
.
2018
;
24
(
4
):
450
-
462
.
111.
Pellicano
F
,
Park
L
,
Hopcroft
LEM
, et al
.
hsa-mir183/EGR1-mediated regulation of E2F1 is required for CML stem/progenitor cell survival
.
Blood
.
2018
;
131
(
14
):
1532
-
1544
.
112.
Kuntz
EM
,
Baquero
P
,
Michie
AM
, et al
.
Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells
.
Nat Med
.
2017
;
23
(
10
):
1234
-
1240
.
113.
Rattigan
KM
,
Zarou
MM
,
Brabcova
Z
, et al
.
Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells
.
EMBO Rep
.
2023
;
24
(
10
):
e56279
.
114.
Rattigan
KM
,
Brabcova
Z
,
Sarnello
D
, et al
.
Pyruvate anaplerosis is a targetable vulnerability in persistent leukaemic stem cells
.
Nat Commun
.
2023
;
14
(
1
):
4634
.
115.
Khalaf
A
,
de Beauchamp
L
,
Kalkman
E
, et al
.
Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia
.
Sci Transl Med
.
2024
;
16
(
751
):
eadi5336
.
116.
Zarou
MM
,
Rattigan
KM
,
Sarnello
D
, et al
.
Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing
.
Nat Commun
.
2024
;
15
(
1
):
1931
.
117.
Ito
T
,
Kwon
HY
,
Zimdahl
B
, et al
.
Regulation of myeloid leukaemia by the cell-fate determinant Musashi
.
Nature
.
2010
;
466
(
7307
):
765
-
768
.
118.
Reavie
L
,
Buckley
SM
,
Loizou
E
, et al
.
Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression
.
Cancer Cell
.
2013
;
23
(
3
):
362
-
375
.
119.
Abraham
SA
,
Hopcroft
LE
,
Carrick
E
, et al
.
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
.
Nature
.
2016
;
534
(
7607
):
341
-
346
.
120.
Ma
L
,
Pak
ML
,
Ou
J
, et al
.
Prosurvival kinase PIM2 is a therapeutic target for eradication of chronic myeloid leukemia stem cells
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
21
):
10482
-
10487
.
121.
La Rosée
P
,
Johnson
K
,
O'Dwyer
ME
,
Druker
BJ
.
In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia
.
Exp Hematol
.
2002
;
30
(
7
):
729
-
737
.
122.
Ito
K
,
Bernardi
R
,
Morotti
A
, et al
.
PML targeting eradicates quiescent leukaemia-initiating cells
.
Nature
.
2008
;
453
(
7198
):
1072
-
1078
.
123.
Tian
J
,
Song
YP
,
Zhang
GC
, et al
.
Oral arsenic plus imatinib versus imatinib solely for newly diagnosed chronic myeloid leukemia: a randomized phase 3 trial with 5-year outcomes
.
J Cancer Res Clin Oncol
.
2024
;
150
(
4
):
189
.
124.
Neviani
P
,
Santhanam
R
,
Trotta
R
, et al
.
The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein
.
Cancer Cell
.
2005
;
8
(
5
):
355
-
368
.
125.
Neviani
P
,
Santhanam
R
,
Oaks
JJ
, et al
.
FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia
.
J Clin Invest
.
2007
;
117
(
9
):
2408
-
2421
.
126.
Lai
D
,
Chen
M
,
Su
J
, et al
.
PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL(+) human leukemia
.
Sci Transl Med
.
2018
;
10
(
427
):
eaan8735
.
127.
Prost
S
,
Relouzat
F
,
Spentchian
M
, et al
.
Erosion of the chronic myeloid leukaemia stem cell pool by PPARgamma agonists
.
Nature
.
2015
;
525
(
7569
):
380
-
383
.
128.
Jin
Y
,
Zhou
J
,
Xu
F
, et al
.
Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia
.
J Clin Invest
.
2016
;
126
(
10
):
3961
-
3980
.
129.
Cramer-Morales
K
,
Nieborowska-Skorska
M
,
Scheibner
K
, et al
.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile
.
Blood
.
2013
;
122
(
7
):
1293
-
1304
.
130.
Li
L
,
Wang
L
,
Li
L
, et al
.
Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib
.
Cancer Cell
.
2012
;
21
(
2
):
266
-
281
.
131.
Naka
K
,
Hoshii
T
,
Muraguchi
T
, et al
.
TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia
.
Nature
.
2010
;
463
(
7281
):
676
-
680
.
132.
Zhao
C
,
Blum
J
,
Chen
A
, et al
.
Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo
.
Cancer Cell
.
2007
;
12
(
6
):
528
-
541
.
133.
McWeeney
SK
,
Pemberton
LC
,
Loriaux
MM
, et al
.
A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib
.
Blood
.
2010
;
115
(
2
):
315
-
325
.
134.
Heidel
FH
,
Bullinger
L
,
Feng
Z
, et al
.
Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML
.
Cell Stem Cell
.
2012
;
10
(
4
):
412
-
424
.
135.
Schurch
C
,
Riether
C
,
Matter
MS
,
Tzankov
A
,
Ochsenbein
AF
.
CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression
.
J Clin Invest
.
2012
;
122
(
2
):
624
-
638
.
136.
Lim
S
,
Saw
TY
,
Zhang
M
, et al
.
Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
25
):
E2298
-
E2307
.
137.
Zhang
B
,
Li
M
,
McDonald
T
, et al
.
Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling
.
Blood
.
2013
;
121
(
10
):
1824
-
1838
.
138.
Eiring
AM
,
Khorashad
JS
,
Anderson
DJ
, et al
.
beta-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia
.
Leukemia
.
2015
;
29
(
12
):
2328
-
2337
.
139.
Agarwal
P
,
Zhang
B
,
Ho
Y
, et al
.
Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI
.
Blood
.
2017
;
129
(
8
):
1008
-
1020
.
140.
Radich
JP
,
Dai
H
,
Mao
M
, et al
.
Gene expression changes associated with progression and response in chronic myeloid leukemia
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
8
):
2794
-
2799
.
141.
Branford
S
,
Wang
P
,
Yeung
DT
, et al
.
Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease
.
Blood
.
2018
;
132
(
9
):
948
-
961
.
142.
Adnan Awad
S
,
Kankainen
M
,
Ojala
T
, et al
.
Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia
.
Blood Adv
.
2020
;
4
(
3
):
546
-
559
.
143.
Ochi
Y
,
Yoshida
K
,
Huang
YJ
, et al
.
Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia
.
Nat Commun
.
2021
;
12
(
1
):
2833
.
144.
Jain
P
,
Kantarjian
HM
,
Ghorab
A
, et al
.
Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: cohort study of 477 patients
.
Cancer
.
2017
;
123
(
22
):
4391
-
4402
.
145.
Copland
M
,
Slade
D
,
McIlroy
G
, et al
.
Ponatinib with fludarabine, cytarabine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phase chronic myeloid leukaemia (MATCHPOINT): a single-arm, multicentre, phase 1/2 trial
.
Lancet Haematol
.
2022
;
9
(
2
):
e121
-
e132
.
146.
Rousselot
PG
,
Roy
L
,
Marzac
C
, et al
.
Ponatinib and 5-azacytidine for the treatment of myeloid blast phase chronic myelogenous leukemia: results of the PONAZA trial [abstract]
.
EHA Library
.
2024
:
S170
.
147.
Burchert
A
,
Wölfl
S
,
Schmidt
M
, et al
.
Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia
.
Blood
.
2003
;
101
(
1
):
259
-
264
.
148.
Tang
K
,
Lipton
JH
.
Stem cell allografting for chronic myeloid leukemia in the tyrosine kinase era - forgotten but not gone
.
Leuk Lymphoma
.
2024
;
65
(
6
):
705
-
714
.
You do not currently have access to this content.
Sign in via your Institution