Abstract

The US Food and Drug Administration announcement in November 2023 regarding reports of the occurrence of secondary T-cell lymphomas in patients receiving chimeric antigen receptor T cells (CAR-Ts) for B-cell malignancies resulted in widespread concern among patients, clinicians, and scientists. Little information relevant to assessing causality, most importantly whether CAR retroviral or lentiviral vector genomic insertions contribute to oncogenesis, was initially available. However, since that time, several publications have provided clinical and molecular details on 3 cases showing clonal CAR vector insertions in tumor cells but without firm evidence these insertions played any role in oncogenic transformation. In addition, several other cases have been reported without vector detected in tumor cells. In addition, epidemiologic analyses as well as institutional long-term CAR-T recipient cohort studies provide important additional information suggesting the risk of T-cell lymphomas after CAR-T therapies is extremely low. This review will provide a summary of information available to date, as well as review relevant prior research suggesting a low susceptibility of mature T cells to insertional oncogenesis and documenting the almost complete lack of T-cell transformation after natural HIV infection. Alternative factors that may predispose patients treated with CAR-Ts to secondary hematologic malignancies, including immune dysfunction and clonal hematopoiesis, are discussed, and likely play a greater role than insertional mutagenesis in secondary malignancies after CAR therapies.

1.
Verdun
N
,
Marks
P
.
Secondary cancers after chimeric antigen receptor T-cell therapy
.
N Engl J Med
.
2024
;
390
(
7
):
584
-
586
.
2.
U.S. Food and Drug Administration
.
Considerations for the development of chimeric antigen receptor (CAR) T cell products
. Accessed 15 August 2024. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-development-chimeric-antigen-receptor-car-t-cell-products.
3.
Hamilton
MP
,
Sugio
T
,
Noordenbos
T
, et al
.
Risk of second tumors and T-cell lymphoma after CAR T-cell therapy
.
N Engl J Med
.
2024
;
390
(
22
):
2047
-
2060
.
4.
Badbaran
A
,
Berger
C
,
Riecken
K
, et al
.
Accurate in-vivo quantification of CD19 CAR-T cells after treatment with axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) using digital PCR
.
Cancers
.
2020
;
12
(
7
):
1970
.
5.
Ozdemirli
M
,
Loughney
TM
,
Deniz
E
, et al
.
Indolent CD4+ CAR T-cell lymphoma after cilta-cel CAR T-cell therapy
.
N Engl J Med
.
2024
;
390
(
22
):
2074
-
2082
.
6.
Espinoza
DA
,
Fan
X
,
Yang
D
, et al
.
Aberrant clonal hematopoiesis following lentiviral vector transduction of HSPCs in a rhesus macaque
.
Mol Ther
.
2019
;
27
(
6
):
1074
-
1086
.
7.
Mendoza
H
,
Tormey
CA
,
Rinder
HM
,
Howe
JG
,
Siddon
AJ
.
The utility and limitations of B- and T-cell gene rearrangement studies in evaluating lymphoproliferative disorders
.
Pathology
.
2021
;
53
(
2
):
157
-
165
.
8.
Bartholomae
CC
,
Glimm
H
,
von Kalle
C
,
Schmidt
M
. Insertion site pattern: global approach by linear amplification-mediated PCR and mass sequencing. In:
Bigot
Y
, eds.
Methods in Molecular Biology
.
Humana Press
;
2012
:
255
-
265
. 859.
9.
Wells
DW
,
Guo
S
,
Shao
W
, et al
.
An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses
.
BMC Genom
.
2020
;
21
(
1
):
216
.
10.
Bushman
FD
.
Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones
.
Mol Ther
.
2020
;
28
(
2
):
352
-
356
.
11.
Bushman
F
,
Lewinski
M
,
Ciuffi
A
, et al
.
Genome-wide analysis of retroviral DNA integration
.
Nat Rev Microbiol
.
2005
;
3
(
11
):
848
-
858
.
12.
Hematti
P
,
Hong
BK
,
Ferguson
C
, et al
.
Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells
.
PLoS Biol
.
2004
;
2
(
12
):
e423
.
13.
Biasco
L
,
Pellin
D
,
Scala
S
, et al
.
In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases
.
Cell Stem Cell
.
2016
;
19
(
1
):
107
-
119
.
14.
Cavazzana-Calvo
M
,
Payen
E
,
Negre
O
, et al
.
Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia
.
Nature
.
2010
;
467
(
7313
):
318
-
322
.
15.
Hacein-Bey-Abina
S
,
Von Kalle
C
,
Schmidt
M
, et al
.
LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1
.
Science
.
2003
;
302
(
5644
):
415
-
419
.
16.
Stein
S
,
Ott
MG
,
Schultze-Strasser
S
, et al
.
Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease
.
Nat Med
.
2010
;
16
(
2
):
198
-
204
.
17.
Duncan
CN
,
Bledsoe
JR
,
Grzywacz
B
, et al
.
Hematologic cancer after gene therapy for cerebral adrenoleukodystrophy
.
N Engl J Med
.
2024
;
391
(
14
):
1287
-
1301
.
18.
Nobles
CL
,
Sherrill-Mix
S
,
Everett
JK
, et al
.
CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration
.
J Clin Invest
.
2020
;
130
(
2
):
673
-
685
.
19.
Shao
L
,
Shi
R
,
Zhao
Y
, et al
.
Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products
.
J Transl Med
.
2022
;
20
(
1
):
514
.
20.
Goyal
S
,
Tisdale
J
,
Schmidt
M
, et al
.
Acute myeloid leukemia case after gene therapy for sickle cell disease
.
N Engl J Med
.
2022
;
386
(
2
):
138
-
147
.
21.
Ghannam
JY
,
Xu
X
,
Maric
I
, et al
.
Baseline TP53 mutations in adults with SCD developing myeloid malignancy following hematopoietic cell transplantation
.
Blood
.
2020
;
135
(
14
):
1185
-
1188
.
22.
Lawal
RA
,
Mukherjee
D
,
Limerick
EM
, et al
.
Increased incidence of hematologic malignancies in SCD after HCT in adults with graft failure and mixed chimerism
.
Blood
.
2022
;
140
(
23
):
2514
-
2518
.
23.
Berns
A
.
Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes
.
J Cell Biochem
.
1991
;
47
(
2
):
130
-
135
.
24.
Biggar
RJ
,
Engels
EA
,
Frisch
M
,
Goedert
JJ
;
AIDS Cancer Match Registry Study Group
.
Risk of T-cell lymphomas in persons with AIDS
.
J Acquir Immune Defic Syndr
.
2001
;
26
(
4
):
371
-
376
.
25.
Arzoo
KK
,
Bu
X
,
Espina
BM
,
Seneviratne
L
,
Nathwani
B
,
Levine
AM
.
T-cell lymphoma in HIV-infected patients
.
J Acquir Immune Defic Syndr
.
2004
;
36
(
5
):
1020
-
1027
.
26.
Herndier
BG
,
Shiramizu
BT
,
Jewett
NE
,
Aldape
KD
,
Reyes
GR
,
McGrath
MS
.
Acquired immunodeficiency syndrome-associated T-cell lymphoma: evidence for human immunodeficiency virus type 1-associated T-cell transformation
.
Blood
.
1992
;
79
(
7
):
1768
-
1774
.
27.
Shiramizu
B
,
Herndier
BG
,
McGrath
MS
.
Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas
.
Cancer Res
.
1994
;
54
(
8
):
2069
-
2072
.
28.
Debackere
K
,
van der Krogt
JA
,
Tousseyn
T
, et al
.
FER and FES tyrosine kinase fusions in follicular T-cell lymphoma
.
Blood
.
2020
;
135
(
8
):
584
-
588
.
29.
Nael
A
,
Walavalkar
V
,
Wu
W
, et al
.
CD4-positive T-cell primary central nervous system lymphoma in an HIV positive patient
.
Am J Clin Pathol
.
2016
;
145
(
2
):
258
-
265
.
30.
Nagahata
Y
,
Kato
A
,
Imai
Y
,
Ishikawa
T
.
HIV-related NK/T-cell lymphoma in the brain relapsed during intensive chemotherapy but regressed after chemotherapy discontinuation: the importance of maintaining cellular immunity
.
Int J Hematol
.
2014
;
100
(
4
):
402
-
406
.
31.
Persaud
D
,
Zhou
Y
,
Siliciano
JM
,
Siliciano
RF
.
Latency in human immunodeficiency virus type 1 infection: no easy answers
.
J Virol
.
2003
;
77
(
3
):
1659
-
1665
.
32.
Maldarelli
F
,
Wu
X
,
Su
L
, et al
.
HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells
.
Science
.
2014
;
345
(
6193
):
179
-
183
.
33.
Newrzela
S
,
Cornils
K
,
Li
Z
, et al
.
Resistance of mature T cells to oncogene transformation
.
Blood
.
2008
;
112
(
6
):
2278
-
2286
.
34.
Newrzela
S
,
Cornils
K
,
Heinrich
T
, et al
.
Retroviral insertional mutagenesis can contribute to immortalization of mature T lymphocytes
.
Mol Med
.
2011
;
17
(
11-12
):
1223
-
1232
.
35.
Hsu
C
,
Jones
SA
,
Cohen
CJ
, et al
.
Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene
.
Blood
.
2007
;
109
(
12
):
5168
-
5177
.
36.
Newrzela
S
,
Al-Ghaili
N
,
Heinrich
T
, et al
.
T-cell receptor diversity prevents T-cell lymphoma development
.
Leukemia
.
2012
;
26
(
12
):
2499
-
2507
.
37.
Bishop
DC
,
Clancy
LE
,
Simms
R
, et al
.
Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells
.
Blood
.
2021
;
138
(
16
):
1504
-
1509
.
38.
Micklethwaite
KP
,
Gowrishankar
K
,
Gloss
BS
, et al
.
Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells
.
Blood
.
2021
;
138
(
16
):
1391
-
1405
.
39.
Liu
X
,
Ning
J
,
Liu
X
,
Chan
WCJ
.
Mutations affecting genes in the proximal T-cell receptor signaling pathway in peripheral T-cell lymphoma
.
Cancers
.
2022
;
14
(
15
):
3716
.
40.
Harrison
SJ
,
Nguyen
T
,
Rahman
M
, et al
.
CAR+ T-cell lymphoma post ciltacabtagene autoleucel therapy for relapse refractory multiple myeloma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
6939
.
41.
Blombery
P
,
Thompson
ER
,
Jones
K
, et al
.
Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma
.
Haematologica
.
2016
;
101
(
9
):
e387
-
e390
.
42.
Lee
JK
,
Koo
SY
,
Nam
HM
, et al
.
Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells
.
Cell Mol Immunol
.
2021
;
18
(
6
):
1395
-
1411
.
43.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
44.
Yeh
CH
,
Bai
XT
,
Moles
R
, et al
.
Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia
.
Mol Cancer
.
2016
;
15
:
15
.
45.
Shah
NN
,
Qin
H
,
Yates
B
, et al
.
Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy
.
Blood Adv
.
2019
;
3
(
15
):
2317
-
2322
.
46.
Schmitz
ML
.
Activation of T cells: releasing the brakes by proteolytic elimination of Cbl-b
.
Sci Signal
.
2009
;
2
(
76
):
pe38
.
47.
Scholler
J
,
Brady
TL
,
Binder-Scholl
G
, et al
.
Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells
.
Sci Transl Med
.
2012
;
4
(
132
):
132ra53
.
48.
Sheih
A
,
Voillet
V
,
Hanafi
LA
, et al
.
Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy
.
Nat Commun
.
2020
;
11
(
1
):
219
.
49.
Ghilardi
G
,
Fraietta
JA
,
Gerson
JN
, et al
.
T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy
.
Nat Med
.
2024
;
30
(
4
):
984
-
989
.
50.
Elsallab
M
,
Ellithi
M
,
Lunning
MA
, et al
.
Second primary malignancies after commercial CAR T-cell therapy: analysis of the FDA adverse events reporting system
.
Blood
.
2024
;
143
(
20
):
2099
-
2105
.
51.
Alkhateeb
HB
,
Mohty
R
,
Greipp
P
, et al
.
Therapy-related myeloid neoplasms following chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma
.
Blood Cancer J
.
2022
;
12
(
7
):
113
.
52.
Chong
EA
,
Ruella
M
,
Schuster
SJ
;
Lymphoma Program Investigators at the University of P
.
Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
.
N Engl J Med
.
2021
;
384
(
7
):
673
-
674
.
53.
Cappell
KM
,
Sherry
RM
,
Yang
JC
, et al
.
Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy
.
J Clin Oncol
.
2020
;
38
(
32
):
3805
-
3815
.
54.
Hsieh
EM
,
Myers
RM
,
Yates
B
, et al
.
Low rate of subsequent malignant neoplasms after CD19 CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
17
):
5222
-
5226
.
55.
Steffin
DHM
,
Muhsen
IN
,
Hill
LC
, et al
.
Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs
.
Blood
.
2022
;
140
(
1
):
16
-
24
.
56.
Lamble
AJ
,
Schultz
LM
,
Nguyen
K
, et al
.
Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults
.
Blood Adv
.
2024
;
8
(
13
):
3544
-
3548
.
57.
Tix
T
,
Alhomoud
M
,
Shouval
R
, et al
.
Second primary malignancies after CAR T-cell therapy: a systematic review and meta-analysis of 5,517 lymphoma and myeloma patients
.
Clin Cancer Res
.
2024;30(20):4690-4700
.
58.
Chihara
D
,
Dores
GM
,
Flowers
CR
,
Morton
LM
.
The bidirectional increased risk of B-cell lymphoma and T-cell lymphoma
.
Blood
.
2021
;
138
(
9
):
785
-
789
.
59.
Ortmann
CA
,
Dorsheimer
L
,
Abou-El-Ardat
K
, et al
.
Functional dominance of CHIP-mutated hematopoietic stem cells in patients undergoing autologous transplantation
.
Cell Rep
.
2019
;
27
(
7
):
2022
-
2028.e3e2023
.
60.
Awada
H
,
Gurnari
C
,
Visconte
V
, et al
.
Clonal hematopoiesis-derived therapy-related myeloid neoplasms after autologous hematopoietic stem cell transplant for lymphoid and non-lymphoid disorders
.
Leukemia
.
2024
;
38
(
6
):
1266
-
1274
.
61.
Panagiota
V
,
Kerschbaum
JF
,
Penack
O
, et al
.
Clinical implications and dynamics of clonal hematopoiesis in anti-CD19 CAR T-cell treated patients
.
Hemasphere
.
2023
;
7
(
10
):
e957
.
62.
Kapadia
CD
,
Rosas
G
,
Thakkar
SG
, et al
.
Incipient clonal hematopoiesis is accelerated following CD30.CAR-T therapy
.
Cytotherapy
.
2024
;
26
(
3
):
261
-
265
.
63.
Hamilton
MP, BJ S
,
Sworder
BJ
,
Alig
SK
, et al
.
CAR19 therapy drives expansion of clonal hematopoiesis and associated cytopenias [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
360
.
64.
Lewis
NE
,
Petrova-Drus
K
,
Huet
S
, et al
.
Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms
.
Blood Adv
.
2020
;
4
(
10
):
2261
-
2271
.
65.
Cheng
S
,
Zhang
W
,
Inghirami
G
,
Tam
W
.
Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking
.
Elife
.
2021
;
10
:
e66395
.
66.
Li
HS
,
Wong
NM
,
Tague
E
,
Ngo
JT
,
Khalil
AS
,
Wong
WW
.
High-performance multiplex drug-gated CAR circuits
.
Cancer Cell
.
2022
;
40
(
11
):
1294
-
1305.e4e1294
.
67.
Stadtmauer
EA
,
Fraietta
JA
,
Davis
MM
, et al
.
CRISPR-engineered T cells in patients with refractory cancer
.
Science
.
2020
;
367
(
6481
):
eaba7365
.
68.
Short
L
,
Holt
RA
,
Cullis
PR
,
Evgin
L
.
Direct in vivo CAR T cell engineering
.
Trends Pharmacol Sci
.
2024
;
45
(
5
):
406
-
418
.
69.
Levine
BL
,
Pasquini
MC
,
Connolly
JE
, et al
.
Unanswered questions following reports of secondary malignancies after CAR-T cell therapy
.
Nat Med
.
2024
;
30
(
2
):
338
-
341
.
You do not currently have access to this content.
Sign in via your Institution