• Among patients relapsed or progressed after DP, CDP combination therapy is tolerable and highly effective.

  • CDP therapy can relieve immunosuppression, increase immunogenicity, and enhance the killing of heterogenous HRS cell populations.

Abstract

DNA methyltransferase inhibitor decitabine plus anti–programmed cell death 1 (DP) therapy was effective in relapsed/refractory classic Hodgkin lymphoma (cHL). However, a subset of patients experienced primary resistance or relapse/progression after DP therapy. In this study, we evaluated the efficacy and safety of a triplet regimen consisting of the histone deacetylase inhibitor chidamide, decitabine, and anti–PD-1 camrelizumab (CDP) in 52 patients who previously received DP therapy. CDP treatment was well tolerated and resulted in an objective response rate of 94% (95% confidence interval [CI], 84-99), with 50% (95% CI, 36-64) of patients achieving complete response (CR). Notably, all patients who were recalcitrant to previous DP treatment exhibited therapeutic responses after CDP therapy, although their CR rate was lower than patients responsive to prior DP. Overall, the median progression-free survival was 29.4 months. Through single-cell RNA sequencing of pretreatment and on-treatment cHL tumor biopsy samples, we observed the heterogeneity of rare malignant Hodgkin Reed/Sternberg (HRS)–like cells. The classical CD30+ HRS-like cells interacted with abundant immunosuppressive IL21+CD4+ T helper cells, forming a positive feedback loop that supported their survival. While the CD30 HRS-like cell population showed potential resistance to anti–PD-1 immunotherapy. CDP treatment promoted the activation of diverse tumor-reactive CD8+ T cells and suppressed the proliferation of IL21+CD4+ T cells by inhibiting STAT1/3 signaling, thereby alleviating their immunosuppressive effects. These findings provide insights into the cHL microenvironment that contributes to anti–PD-1 resistance and highlight the therapeutic effectiveness of dual epi-immunotherapy in overcoming immunotherapy resistance. This trial was registered at www.clinicaltrials.gov as #NCT04233294.

1.
Younes
A
,
Santoro
A
,
Shipp
M
, et al
.
Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial
.
Lancet Oncol
.
2016
;
17
(
9
):
1283
-
1294
.
2.
Chen
R
,
Zinzani
PL
,
Fanale
MA
, et al
.
Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
19
):
2125
-
2132
.
3.
Armand
P
,
Engert
A
,
Younes
A
, et al
.
Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 Trial
.
J Clin Oncol
.
2018
;
36
(
14
):
1428
-
1439
.
4.
Ansell
SM
,
Lesokhin
AM
,
Borrello
I
, et al
.
PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma
.
N Engl J Med
.
2015
;
372
(
4
):
311
-
319
.
5.
Nie
J
,
Wang
C
,
Liu
Y
, et al
.
Addition of low-dose decitabine to anti-PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin lymphoma
.
J Clin Oncol
.
2019
;
37
(
17
):
1479
-
1489
.
6.
Roemer
MG
,
Advani
RH
,
Ligon
AH
, et al
.
PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome
.
J Clin Oncol
.
2016
;
34
(
23
):
2690
-
2697
.
7.
Aoki
T
,
Chong
LC
,
Takata
K
, et al
.
Single-cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
406
-
421
.
8.
Carey
CD
,
Gusenleitner
D
,
Lipschitz
M
, et al
.
Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma
.
Blood
.
2017
;
130
(
22
):
2420
-
2430
.
9.
Li
X
,
Li
Y
,
Dong
L
, et al
.
Decitabine priming increases anti-PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models
.
J Clin Invest
.
2023
;
133
(
7
):
e165673
.
10.
Sermer
D
,
Pasqualucci
L
,
Wendel
HG
,
Melnick
A
,
Younes
A
.
Emerging epigenetic-modulating therapies in lymphoma
.
Nat Rev Clin Oncol
.
2019
;
16
(
8
):
494
-
507
.
11.
Liu
Y
,
Wang
C
,
Li
X
, et al
.
Improved clinical outcome in a randomized phase II study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma
.
J Immunother Cancer
.
2021
;
9
(
4
):
e002347
.
12.
Wang
C
,
Pan
Y
,
Liu
Y
, et al
.
Long-term complete remission and peripheral biomarkers in Hodgkin lymphoma patients after decitabine-plus-camrelizumab epi-immunotherapy and treatment cessation
.
MedComm (2020)
.
2023
;
4
(
6
):
e428
.
13.
Wang
C
,
Liu
Y
,
Dong
L
, et al
.
Efficacy of decitabine plus anti-PD-1 camrelizumab in patients with Hodgkin lymphoma who progressed or relapsed after PD-1 blockade monotherapy
.
Clin Cancer Res
.
2021
;
27
(
10
):
2782
-
2791
.
14.
Younes
A
,
Sureda
A
,
Ben-Yehuda
D
, et al
.
Panobinostat in patients with relapsed/refractory Hodgkin's lymphoma after autologous stem-cell transplantation: results of a phase II study
.
J Clin Oncol
.
2012
;
30
(
18
):
2197
-
2203
.
15.
Mei
M
,
Chen
L
,
Godfrey
J
, et al
.
Pembrolizumab plus vorinostat induces responses in patients with Hodgkin lymphoma refractory to prior PD-1 blockade
.
Blood
.
2023
;
142
(
16
):
1359
-
1370
.
16.
Steidl
C
,
Diepstra
A
,
Lee
T
, et al
.
Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma
.
Blood
.
2012
;
120
(
17
):
3530
-
3540
.
17.
Schwab
U
,
Stein
H
,
Gerdes
J
, et al
.
Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells
.
Nature
.
1982
;
299
(
5878
):
65
-
67
.
18.
Connors
JM
,
Cozen
W
,
Steidl
C
, et al
.
Hodgkin lymphoma
.
Nat Rev Dis Primers
.
2020
;
6
(
1
):
61
.
19.
Bergen
V
,
Lange
M
,
Peidli
S
,
Wolf
FA
,
Theis
FJ
.
Generalizing RNA velocity to transient cell states through dynamical modeling
.
Nat Biotechnol
.
2020
;
38
(
12
):
1408
-
1414
.
20.
Zheng
HL
,
Xie
JJ
,
Song
K
, et al
.
StemSC: a cross-dataset human stemness index for single-cell samples
.
Stem Cell Res Ther
.
2022
;
13
(
1
):
115
.
21.
Chen
YH
,
Yu
M
,
Zheng
YW
, et al
.
CXCR5(+)PD-1(+) follicular helper CD8 T cells control B cell tolerance
.
Nat Commun
.
2019
;
10
(
1
):
4415
.
22.
van der Leun
AM
,
Thommen
DS
,
Schumacher
TN
.
CD8(+) T cell states in human cancer: insights from single-cell analysis
.
Nat Rev Cancer
.
2020
;
20
(
4
):
218
-
232
.
23.
Zhang
L
,
Yu
X
,
Zheng
LT
, et al
.
Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
.
Nature
.
2018
;
564
(
7735
):
268
-
272
.
24.
Aoki
T
,
Chong
LC
,
Takata
K
, et al
.
Single-cell profiling reveals the importance of CXCL13/CXCR5 axis biology in lymphocyte-rich classic Hodgkin lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
41
):
e2105822118
.
25.
Garcia-Alonso
L
,
Lorenzi
V
,
Mazzeo
CI
, et al
.
Single-cell roadmap of human gonadal development
.
Nature
.
2022
;
607
(
7919
):
540
-
547
.
26.
Browaeys
R
,
Saelens
W
,
Saeys
Y
.
NicheNet: modeling intercellular communication by linking ligands to target genes
.
Nat Methods
.
2020
;
17
(
2
):
159
-
162
.
27.
Weniger
MA
,
Kuppers
R
.
Molecular biology of Hodgkin lymphoma
.
Leukemia
.
2021
;
35
(
4
):
968
-
981
.
28.
von Hoff
L
,
Kargel
E
,
Franke
V
, et al
.
Autocrine LTA signaling drives NF-kappa B and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma
.
Blood
.
2019
;
133
(
13
):
1489
-
1494
.
29.
Lamprecht
B
,
Kreher
S
,
Anagnostopoulos
I
, et al
.
Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts T-reg cells via regulation of MIP-3 alpha
.
Blood
.
2008
;
112
(
8
):
3339
-
3347
.
30.
Brune
V
,
Tiacci
E
,
Pfeil
I
, et al
.
Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis
.
J Exp Med
.
2008
;
205
(
10
):
2251
-
2268
.
31.
Wolf
Y
,
Anderson
AC
,
Kuchroo
VK
.
TIM3 comes of age as an inhibitory receptor
.
Nat Rev Immunol
.
2020
;
20
(
3
):
173
-
185
.
32.
Ning
ZQ
,
Li
ZB
,
Newman
MJ
, et al
.
Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity
.
Cancer Chemother Pharmacol
.
2012
;
69
(
4
):
901
-
909
.
33.
Pan
DS
,
Yang
QJ
,
Fu
X
, et al
.
Discovery of an orally active subtype-selective HDAC inhibitor, chidamide, as an epigenetic modulator for cancer treatment
.
Medchemcomm
.
2014
;
5
(
12
):
1789
-
1796
.
34.
Aibar
S
,
Gonzalez-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
-
1086
.
35.
Marques-Piubelli
ML
,
Kim
DH
,
Medeiros
LJ
, et al
.
CD30 expression is frequently decreased in relapsed classic Hodgkin lymphoma after anti-CD30 CAR T-cell therapy
.
Histopathology
.
2023
;
83
(
1
):
143
-
148
.
36.
Kim
DH
,
Vega
F
.
Relapsed classic Hodgkin lymphoma with decreased CD30 expression after brentuximab and anti-CD30 CAR-T therapies
.
Blood
.
2022
;
139
(
6
):
951
.
37.
Al-Rohil
RN
,
Torres-Cabala
CA
,
Patel
A
, et al
.
Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding
.
J Cutan Pathol
.
2016
;
43
(
12
):
1161
-
1166
.
38.
Goyal
A
,
Patel
S
,
Goyal
K
,
Morgan
EA
,
Foreman
RK
.
Variable loss of CD30 expression by immunohistochemistry in recurrent cutaneous CD30+ lymphoid neoplasms treated with brentuximab vedotin
.
J Cutan Pathol
.
2019
;
46
(
11
):
823
-
829
.
39.
Nutt
SL
,
Tarlinton
DM
.
Germinal center B and follicular helper T cells: siblings, cousins or just good friends?
.
Nat Immunol
.
2011
;
12
(
6
):
472
-
477
.
You do not currently have access to this content.
Sign in via your Institution