• We describe the phenotypes of mouse models of XLSA, the SLC25A38 anemia, and XLPP.

  • XLSA and SLC25A38-CSA are conditionally synthetically lethal with pyridoxine deficiency.

Abstract

X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase (ALAS), ALAS2, which encodes the first enzyme in heme biosynthesis. A related congenital sideroblastic anemia (CSA) is due to mutations in SLC25A38 (solute carrier family 25 member A38), which supplies mitochondrial glycine for ALAS2 (SLC25A38–CSA). The lack of viable animal models has limited the studies on pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knockin mouse models that recapitulate the main features of XLSA and XLPP; and using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP/EPP protoporphyrias, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ β-thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis–related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.

1.
Peoc'h
K
,
Nicolas
G
,
Schmitt
C
, et al
.
Regulation and tissue-specific expression of delta-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias
.
Mol Genet Metab
.
2019
;
128
(
3
):
190
-
197
.
2.
Bottomley
SS
,
Fleming
MD
.
Sideroblastic anemia: diagnosis and management
.
Hematol Oncol Clin North Am
.
2014
;
28
(
4
):
653
-
670, v
.
3.
Ducamp
S
,
Fleming
MD
.
The molecular genetics of sideroblastic anemia
.
Blood
.
2019
;
133
(
1
):
59
-
69
.
4.
Cazzola
M
,
Malcovati
L
.
Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing
.
Hematology Am Soc Hematol Educ Program
.
2015
;
1
:
19
-
25
.
5.
Whatley
SD
,
Ducamp
S
,
Gouya
L
, et al
.
C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload
.
Am J Hum Genet
.
2008
;
83
(
3
):
408
-
414
.
6.
Gouya
L
,
Martin-Schmitt
C
,
Robreau
AM
, et al
.
Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria
.
Am J Hum Genet
.
2006
;
78
(
1
):
2
-
14
.
7.
Di Pierro
E
,
Granata
F
,
De Canio
M
, et al
.
Recognized and emerging features of erythropoietic and X-linked protoporphyria
.
Diagnostics (Basel)
.
2022
;
12
(
1
):
151
.
8.
Fratz
EJ
,
Clayton
J
,
Hunter
GA
, et al
.
Human erythroid 5-aminolevulinate synthase mutations associated with X-linked protoporphyria disrupt the conformational equilibrium and enhance product release
.
Biochemistry
.
2015
;
54
(
36
):
5617
-
5631
.
9.
Bailey
HJ
,
Bezerra
GA
,
Marcero
JR
, et al
.
Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release
.
Nat Commun
.
2020
;
11
(
1
):
2813
.
10.
Ducamp
S
,
Schneider-Yin
X
,
de Rooij
F
, et al
.
Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP)
.
Hum Mol Genet
.
2013
;
22
(
7
):
1280
-
1288
.
11.
Leaf
RK
,
Dickey
AK
.
How I treat erythropoietic protoporphyria and X-linked protoporphyria
.
Blood
.
2023
;
141
(
24
):
2921
-
2931
.
12.
Balwani
M
,
Doheny
D
,
Bishop
DF
, et al
.
Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and x-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria
.
Mol Med
.
2013
;
19
(
1
):
26
-
35
.
13.
Tchaikovskii
V
,
Desnick
RJ
,
Bishop
DF
.
Molecular expression, characterization and mechanism of ALAS2 gain-of-function mutants
.
Mol Med
.
2019
;
25
(
1
):
4
.
14.
Ducamp
S
,
Kannengiesser
C
,
Touati
M
, et al
.
Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations
.
Hum Mutat
.
2011
;
32
(
6
):
590
-
597
.
15.
Harigae
H
,
Furuyama
K
.
Hereditary sideroblastic anemia: pathophysiology and gene mutations
.
Int J Hematol
.
2010
;
92
(
3
):
425
-
431
.
16.
Guernsey
DL
,
Jiang
H
,
Campagna
DR
, et al
.
Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia
.
Nat Genet
.
2009
;
41
(
6
):
651
-
653
.
17.
Kannengiesser
C
,
Sanchez
M
,
Sweeney
M
, et al
.
Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia
.
Haematologica
.
2011
;
96
(
6
):
808
-
813
.
18.
Heeney
MM
,
Berhe
S
,
Campagna
DR
, et al
.
SLC25A38 congenital sideroblastic anemia: phenotypes and genotypes of 31 individuals from 24 families, including 11 novel mutations, and a review of the literature
.
Hum Mutat
.
2021
;
42
(
11
):
1367
-
1383
.
19.
Langendonk
JG
,
Balwani
M
,
Anderson
KE
, et al
.
Afamelanotide for erythropoietic protoporphyria
.
N Engl J Med
.
2015
;
373
(
1
):
48
-
59
.
20.
Minder
EI
.
Afamelanotide, an agonistic analog of alpha-melanocyte-stimulating hormone, in dermal phototoxicity of erythropoietic protoporphyria
.
Expert Opin Investig Drugs
.
2010
;
19
(
12
):
1591
-
1602
.
21.
Balwani
M
,
Bonkovsky
HL
,
Levy
C
, et al
.
Dersimelagon in erythropoietic protoporphyrias
.
N Engl J Med
.
2023
;
388
(
15
):
1376
-
1385
.
22.
Halloy
F
,
Iyer
PS
,
Ghidini
A
, et al
.
Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria
.
Cell Chem Biol
.
2021
;
28
(
8
):
1221
-
1234.e6
.
23.
Nakajima
O
,
Takahashi
S
,
Harigae
H
, et al
.
Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload
.
EMBO J
.
1999
;
18
(
22
):
6282
-
6289
.
24.
Nakajima
O
,
Okano
S
,
Harada
H
, et al
.
Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes
.
Gene Cell
.
2006
;
11
(
6
):
685
-
700
.
25.
Zhang
Y
,
Zhang
J
,
An
W
, et al
.
Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation
.
Nucleic Acids Res
.
2017
;
45
(
2
):
657
-
671
.
26.
Josa
S
,
Seruggia
D
,
Fernandez
A
,
Montoliu
L
.
Concepts and tools for gene editing
.
Reprod Fertil Dev
.
2016
;
29
(
1
):
1
-
7
.
27.
Harms
DW
,
Quadros
RM
,
Seruggia
D
, et al
.
Mouse genome editing using the CRISPR/Cas system
.
Curr Protoc Hum Genet
.
2014
;
83
(
1
):
17 11
-
27
.
28.
Chen
K
,
Liu
J
,
Heck
S
,
Chasis
JA
,
An
X
,
Mohandas
N
.
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
41
):
17413
-
17418
.
29.
Liu
J
,
Zhang
J
,
Ginzburg
Y
, et al
.
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis
.
Blood
.
2013
;
121
(
8
):
e43
-
e49
.
30.
Guo
W
,
Schmidt
PJ
,
Fleming
MD
,
Bhasin
S
.
Hepcidin is not essential for mediating testosterone's effects on erythropoiesis
.
Andrology
.
2020
;
8
(
1
):
82
-
90
.
31.
Pondarre
C
,
Campagna
DR
,
Antiochos
B
,
Sikorski
L
,
Mulhern
H
,
Fleming
MD
.
Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis
.
Blood
.
2007
;
109
(
8
):
3567
-
3569
.
32.
Schmidt
PJ
,
Liu
K
,
Visner
G
, et al
.
RNAi-mediated reduction of hepatic Tmprss6 diminishes anemia and secondary iron overload in a splenectomized mouse model of beta-thalassemia intermedia
.
Am J Hematol
.
2018
;
93
(
6
):
745
-
750
.
33.
Schmidt
PJ
,
Racie
T
,
Westerman
M
,
Fitzgerald
K
,
Butler
JS
,
Fleming
MD
.
Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of beta-thalassemia intermedia
.
Am J Hematol
.
2015
;
90
(
4
):
310
-
313
.
34.
Schmidt
PJ
,
Toudjarska
I
,
Sendamarai
AK
, et al
.
An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia
.
Blood
.
2013
;
121
(
7
):
1200
-
1208
.
35.
Crispin
A
,
Guo
C
,
Chen
C
, et al
.
Mutations in the iron-sulfur cluster biogenesis protein HSCB cause congenital sideroblastic anemia
.
J Clin Invest
.
2020
;
130
(
10
):
5245
-
5256
.
36.
Bergonia
HA
,
Franklin
MR
,
Kushner
JP
,
Phillips
JD
.
A method for determining delta-aminolevulinic acid synthase activity in homogenized cells and tissues
.
Clin Biochem
.
2015
;
48
(
12
):
788
-
795
.
37.
Astner
I
,
Schulze
JO
,
van den Heuvel
J
,
Jahn
D
,
Schubert
WD
,
Heinz
DW
.
Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans
.
The EMBO journal
.
2005
;
24
(
18
):
3166
-
3177
.
38.
Boulechfar
S
,
Lamoril
J
,
Montagutelli
X
, et al
.
Ferrochelatase structural mutant (Fechm1Pas) in the house mouse
.
Genomics
.
1993
;
16
(
3
):
645
-
648
.
39.
Fleming
MD
,
Campagna
DR
,
Haslett
JN
,
Trenor
CC
,
Andrews
NC
.
A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (f/f) mice
.
Genes Dev
.
2001
;
15
(
6
):
652
-
657
.
40.
Obeng
EA
,
Chappell
RJ
,
Seiler
M
, et al
.
Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation
.
Cancer Cell
.
2016
;
30
(
3
):
404
-
417
.
41.
Mupo
A
,
Seiler
M
,
Sathiaseelan
V
, et al
.
Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts
.
Leukemia
.
2017
;
31
(
3
):
720
-
727
.
42.
Mangum
JE
,
Hardee
JP
,
Fix
DK
, et al
.
Pseudouridine synthase 1 deficient mice, a model for mitochondrial myopathy with sideroblastic anemia, exhibit muscle morphology and physiology alterations
.
Sci Rep
.
2016
;
6
:
26202
.
43.
Furuyama
K
,
Harigae
H
,
Heller
T
, et al
.
Arg452 substitution of the erythroid-specific 5-aminolaevulinate synthase, a hot spot mutation in X-linked sideroblastic anaemia, does not itself affect enzyme activity
.
Eur J Haematol
.
2006
;
76
(
1
):
33
-
41
.
44.
Livideanu
CB
,
Ducamp
S
,
Lamant
L
, et al
.
Late-onset X-linked dominant protoporphyria: an etiology of photosensitivity in the elderly
.
J Invest Dermatol
.
2013
;
133
(
6
):
1688
-
1690
.
45.
Ducamp
S
,
Kannengiesser
C
,
Touati
M
, et al
.
Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations
.
Hum Mutat
.
2011
;
32
(
6
):
590
-
597
.
46.
Katsurada
T
,
Kawabata
H
,
Kawabata
D
, et al
.
A Japanese family with X-linked sideroblastic anemia affecting females and manifesting as macrocytic anemia
.
Int J Hematol
.
2016
;
103
(
6
):
713
-
717
.
47.
Aivado
M
,
Gattermann
N
,
Bottomley
S
.
X chromosome inactivation ratios in female carriers of X-linked sideroblastic anemia
.
Blood
.
2001
;
97
(
12
):
4000
-
4002
.
48.
Aivado
M
,
Gattermann
N
,
Rong
A
, et al
.
X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns
.
Blood Cells Mol Dis
.
2006
;
37
(
1
):
40
-
45
.
49.
Yang
B
,
Kirby
S
,
Lewis
J
,
Detloff
PJ
,
Maeda
N
,
Smithies
O
.
A mouse model for beta 0-thalassemia
.
Proc Natl Acad Sci U S A
.
1995
;
92
(
25
):
11608
-
11612
.
50.
Zhang
AS
,
Sheftel
AD
,
Ponka
P
.
Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria
.
Blood
.
2005
;
105
(
1
):
368
-
375
.
51.
Hatta
S
,
Fujiwara
T
,
Yamamoto
T
, et al
.
A defined culture method enabling the establishment of ring sideroblasts from induced pluripotent cells of X-linked sideroblastic anemia
.
Haematologica
.
2018
;
103
(
5
):
e188
-
e191
.
52.
Saito
K
,
Fujiwara
T
,
Hatta
S
, et al
.
Generation and molecular characterization of human ring sideroblasts: a key role of ferrous iron in terminal erythroid differentiation and ring sideroblast formation
.
Mol Cell Biol
.
2019
;
39
(
7
):
e00387-18
.
53.
Morimoto
Y
,
Chonabayashi
K
,
Kawabata
H
, et al
.
Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia
.
Blood Adv
.
2022
;
6
(
4
):
1100
-
1114
.
54.
Ono
K
,
Fujiwara
T
,
Saito
K
, et al
.
Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis
.
Sci Rep
.
2022
;
12
(
1
):
9024
.
55.
Taylor
JL
,
Brown
BL
.
Structural basis for dysregulation of aminolevulinic acid synthase in human disease
.
J Biol Chem
.
2022
;
298
(
3
):
101643
.
56.
Parker
CJ
,
Desnick
RJ
,
Bissel
MD
, et al
.
Results of a pilot study of isoniazid in patients with erythropoietic protoporphyria
.
Mol Genet Metab
.
2019
;
128
(
3
):
309
-
313
.
57.
Fratz-Berilla
EJ
,
Breydo
L
,
Gouya
L
,
Puy
H
,
Uversky
VN
,
Ferreira
GC
.
Isoniazid inhibits human erythroid 5-aminolevulinate synthase: molecular mechanism and tolerance study with four X-linked protoporphyria patients
.
Biochim Biophys Acta
.
2017
;
1863
(
2
):
428
-
439
.
58.
Morris
MS
,
Picciano
MF
,
Jacques
PF
,
Selhub
J
.
Plasma pyridoxal 5'-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003-2004
.
Am J Clin Nutr
.
2008
;
87
(
5
):
1446
-
1454
.
59.
Fernandez-Murray
JP
,
Prykhozhij
SV
,
Dufay
JN
, et al
.
Glycine and folate ameliorate models of congenital sideroblastic anemia
.
PLoS Genet
.
2016
;
12
(
1
):
e1005783
.
60.
LeBlanc
MA
,
Bettle
A
,
Berman
JN
, et al
.
Study of glycine and folic acid supplementation to ameliorate transfusion dependence in congenital SLC25A38 mutated sideroblastic anemia
.
Pediatr Blood Cancer
.
2016
;
63
(
7
):
1307
-
1309
.
You do not currently have access to this content.
Sign in via your Institution