Pyruvate kinase (PK) deficiency is a congenital hemolytic anemia with wide-ranging clinical symptoms and complications associated with significant morbidity and reduced health-related quality of life in both children and adults. The management of patients with PK deficiency has been historically challenging due to difficulties in the diagnostic evaluation, heterogeneity of clinical manifestations, and treatment options limited to supportive care with transfusions and splenectomy. An oral allosteric PK activator, mitapivat, is now a clinically available disease-modifying treatment for adults with PK deficiency. Phase 2 and 3 clinical trials of mitapivat have demonstrated sustained improvements in hemolytic anemia, hematopoiesis, and quality of life in many adults with PK deficiency and a generally reassuring safety profile with continued dosing. Additional long-term benefits include rapid and ongoing reduction in iron overload and potential stabilization of bone health. Clinical trials of treatment with mitapivat in children with PK deficiency are ongoing. In addition to disease-modifying treatment with PK activators, gene therapy is a potentially curative treatment currently under evaluation in clinical trials. With the availability of disease-targeted therapies, accurately diagnosing PK deficiency in patients with chronic hemolytic anemia is critical. PK activation and gene therapy have the potential to change the natural history of PK deficiency by improving clinical manifestations and patient quality of life and decreasing the risk of long-term complications.

1.
Oski
FA
,
Nathan
DG
,
Sidel
VW
,
Diamond
LK
.
Extreme hemolysis and red-cell distortion in erythrocyte pyruvate kinase deficiency. I. Morphology, erythrokinetics and family enzyme studies
.
N Engl J Med
.
1964
;
270
:
1023
-
1030
.
doi:10.1056/NEJM196405142702001
.
2.
Nathan
DG
,
Oski
FA
,
Sidel
VW
,
Diamond
LK
.
Extreme hemolysis and red-cell distortion in erythrocyte pyruvate kinase deficiency. Measurements of erythrocyte glucose consumption, potassium flux and adenosine triphosphate stability
.
N Engl J Med
.
1965
;
272
:
118
-
123
.
doi:10.1056/NEJM196501212720302
.
3.
Selwyn
JG
,
Dacie
JV
.
Autohemolysis and other changes resulting from the incubation in vitro of red cells from patients with congenital hemolytic anemia
.
Blood
.
1954
;
9
(
5
):
414
-
438
.
doi:10.1182/blood.V9.5.414.414
.
4.
De Gruchy
GC
,
Santamaria
JN
,
Parsons
IC
,
Crawford
H.
Nonspherocytic congenital hemolytic anemia
.
Blood
.
1960
;
16
:
1371
-
1397
.
doi:10.1182/blood.V16.4.1371.1371
.
5.
Mentzer
WC
,
Baehner
RL
,
Schmidt-Schönbein
H
,
Robinson
SH
,
Nathan
DG
.
Selective reticulocyte destruction in erythrocyte pyruvate kinase deficiency
.
J Clin Invest
.
1971
;
50
(
3
):
688
-
699
.
doi:10.1172/jci106539
.
6.
Oski
FA
,
Marshall
BE
,
Cohen
PJ
,
Sugerman
HJ
,
Miller
LD
.
The role of the left-shifted or right-shifted oxygen-hemoglobin equilibrium curve
.
Ann Intern Med
.
1971
;
74
(
1
):
44
-
46
.
PMID: 5539276
.
doi:10.7326/0003-4819-74-1-44
7.
Bianchi
P
,
Fermo
E
,
Glader
B
, et al.
Addressing the diagnostic gaps in pyruvate kinase deficiency: consensus recommendations on the diagnosis of pyruvate kinase deficiency
.
Am J Hematol
.
2019
;
94
(
1
):
149
-
161
.
doi:10.1002/ajh.25325
.
8.
Beutler
E
,
Gelbart
T.
Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population
.
Blood
.
2000
;
95
(
11
):
3585
-
3588
.
doi:10.1182/blood.v95.11.3585
.
9.
Secrest
MH
,
Storm
M
,
Carrington
C
, et al.
Prevalence of pyruvate kinase deficiency: a systematic literature review
.
Eur J Haematol
.
2020
;
105
(
2
):
173
-
184
.
doi:10.1111/ejh.13424
.
10.
Bianchi
P
,
Elisa Fermo
E
,
Glader
B
, et al.
Addressing the diagnostic gaps in pyruvate kinase (PK) deficiency: consensus recommendations on the diagnosis of PK deficiency
.
Am J Hematol
.
2018
;
94
(
1
):
149
-
161
.
doi:0.1002/ajh.25325
.
11.
Al-Samkari
H
,
Addonizio
K
,
Glader
B
, et al.
The pyruvate kinase (PK) to hexokinase enzyme activity ratio and erythrocyte PK protein level in the diagnosis and phenotype of PK deficiency
.
Br J Haematol
.
2021
;
192
(
6
):
1092
-
1096
.
doi:10.1111/bjh.16724
.
12.
Grace
RF
,
Bianchi
P
,
van Beers
EJ
, et al.
Clinical spectrum of pyruvate kinase deficiency: data from the Pyruvate Kinase Deficiency Natural History Study
.
Blood
.
2018
;
131
(
20
):
2183
-
2192
.
doi:10.1182/blood-2017-10-810796
.
13.
Zanella
A
,
Fermo
E
,
Bianchi
P
,
Valentini
G.
Red cell pyruvate kinase deficiency: molecular and clinical aspects
.
Br J Haematol
.
2005
;
130
(
1
):
11
-
25
.
doi:10.1111/j.1365-2141.2005.05527.x
.
14.
Al-Samkari
H
,
Van Beers
EJ
,
Kuo
KHM
, et al.
The variable manifestations of disease in pyruvate kinase deficiency and their management
.
Haematologica
.
2020
;
105
(
9
):
2229
-
2239
.
doi:10.3324/haematol.2019.240846
.
15.
Marshall
SR
,
Saunders
PWG
,
Hamilton
PJ
,
Taylor
PRA
.
The dangers of iron overload in pyruvate kinase deficiency: correspondence
.
Br J Haematol
.
2003
;
120
(
6
):
1090
-
1091
.
doi:10.1046/j.1365-2141.2003.04208_2.x
.
16.
Chonat
S
,
Eber
SW
,
Holzhauer
S
, et al.
Pyruvate kinase deficiency in children
.
Pediatr Blood Cancer
.
2021
;
68
(
9
):
e29148
.
doi:10.1002/pbc.29148
.
17.
van Beers
EJ
,
van Straaten
S
,
Morton
DH
, et al.
Prevalence and management of iron overload in pyruvate kinase deficiency: report from the Pyruvate Kinase Deficiency Natural History Study
.
Haematologica
.
2019
;
104
(
2
):
e51
-
e53
.
doi:10.3324/haematol.2018.196295
.
18.
Iolascon
A
,
Andolfo
I
,
Barcellini
W
, et al
;
Working Study Group on Red Cells and Iron of the EHA
.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
doi:10.3324/haematol.2016.161166
.
19.
Kim
M
,
Park
J
,
Lee
J
, et al.
Hemolytic anemia with null PKLR mutations identified using whole exome sequencing and cured by hematopoietic stem cell transplantation combined with splenectomy
.
Bone Marrow Transplant
.
2016
;
51
(
12
):
1605
-
1608
.
doi:10.1038/bmt.2016.218
.
20.
Tanphaichitr
VS
,
Suvatte
V
,
Issaragrisil
S
, et al.
Successful bone marrow transplantation in a child with red blood cell pyruvate kinase deficiency
.
Bone Marrow Transpl
.
2000
;
26
(
6
):
689
-
690
.
doi:10.1038/sj.bmt.1702576
.
21.
van Straaten
S
,
Bierings
M
,
Bianchi
P
, et al.
Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase deficiency
.
Haematologica
.
2018
;
103
(
2
):
e82
-
e86
.
doi:10.3324/haematol.2017.177857
.
22.
Meza
NW
,
Alonso-Ferrero
ME
,
Navarro
S
, et al.
Rescue of pyruvate kinase deficiency in mice by gene therapy using the human isoenzyme
.
Mol Ther
.
2009
;
17
(
12
):
2000
-
2009
.
doi:10.1038/mt.2009.200
.
23.
Richard
RE
,
Weinreich
M
,
Chang
KH
,
Ieremia
J
,
Stevenson
MM
,
Blau
CA
.
Modulating erythrocyte chimerism in a mouse model of pyruvate kinase deficiency
.
Blood
.
2004
;
103
(
12
):
4432
-
4439
.
doi:10.1182/blood-2003-10-3705
.
24.
Tani
K
,
Yoshikubo
T
,
Ikebuchi
K
, et al.
Retrovirus-mediated gene transfer of human pyruvate kinase (PK) cDNA into murine hematopoietic cells: implications for gene therapy of human PK deficiency
.
Blood
.
1994
;
83
(
8
):
2305
-
2310
.
PMID: 8161797
.
doi:10.1182/blood.V83.8.2305.2305
25.
Shah
AJ
,
Lorenzo
JLL
,
Sevilla
J.
Lentiviral-mediated gene therapy for adults and children with severe pyruvate kinase deficiency: results from a global phase 1 study [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
4902
-
4903
.
doi:10.1182/blood-2022-170948
.
26.
Yang
H
,
Merica
E
,
Chen
Y
, et al.
Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers
.
Clin Pharmacol Drug Dev
.
2019
;
8
(
2
):
246
-
259
.
doi:10.1002/cpdd.604
.
27.
Kung
C
,
Hixon
J
,
Kosinski
PA
, et al.
AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency
.
Blood
.
2017
;
130
(
11
):
1347
-
1356
.
doi:10.1182/blood-2016-11-753525
.
28.
Rab
MAE
,
Van Oirschot
BA
,
Kosinski
PA
, et al.
AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes
.
Haematologica
.
2021
;
106
(
1
):
238
-
249
.
doi:10.3324/haematol.2019.238865
.
29.
Grace
RF
,
Rose
C
,
Layton
DM
, et al.
Safety and efficacy of mitapivat in pyruvate kinase deficiency
.
N Engl J Med
.
2019
;
381
(
10
):
933
-
944
.
doi:10.1056/NEJMoa1902678
.
30.
Al-Samkari
H
,
Galactéros
F
,
Glenthøj
A
, et al
;
ACTIVATE Investigators
.
Mitapivat versus placebo for pyruvate kinase deficiency
.
N Engl J Med
.
2022
;
386
(
15
):
1432
-
1442
.
doi:10.1056/NEJMoa2116634
.
31.
Glenthøj
A
,
van Beers
EJ
,
Al-Samkari
H
, et al.
Mitapivat in adult patients with pyruvate kinase deficiency receiving regular transfusions (ACTIVATE-T): a multicentre, open-label, single-arm, phase 3 trial
.
Lancet Haematol
.
2022
;
9
(
10
):
e724
-
e732
.
doi:10.1016/S2352-3026(22)00214-9
.
32.
Kuo
KHM
,
Grace
RF
,
van Beers
EJ
, et al.
Long-term improvements in patient-reported outcomes in patients with pyruvate kinase deficiency treated with mitapivat
.
Blood
.
2022
;
140
(
Supplement 1
):
1223
-
1225
.
doi:10.1182/blood-2022-168954
.
33.
Barcellini
W.
Long-Term Treatment With Oral Mitapivat Is Associated With Normalization of Hemoglobin Levels in Patients With Pyruvate Kinase Deficiency
.
European Hematology Association
;
2022
.
34.
Grace
RF
,
Glenthøj
A
,
Barcellini
W
, et al.
Long-term hemoglobin response and reduction in transfusion burden are maintained in patients with pyruvate kinase deficiency treated with mitapivat [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
5313
-
5315
.
doi:10.1182/blood-2022-169125
.
35.
van Beers
EJ
,
Al-Samkari
H
,
Grace
RF
, et al.
Mitapivat improves ineffective erythropoiesis and reduces iron overload in patients with pyruvate kinase deficiency
.
HemaSphere
.
2022
;
6
(
suppl
):
1446
-
1447
.
doi:10.1097/01.HS9.0000849116.94935.15
.
36.
Al-Samkari
H
,
Grace
RF
,
Glenthøj
A
, et al.
Bone mineral density remains stable in pyruvate kinase deficiency patients receiving long-term treatment with mitapivat
.
HemaSphere
.
2022
;
6
(
suppl
):
1425
-
1426
.
doi:10.1097/01.HS9.0000849032.75798.50
.
37.
Forsyth
S
,
Schroeder
P
,
Geib
J
, et al.
Safety, pharmacokinetics, and pharmacodynamics of etavopivat (FT-4202), an allosteric activator of pyruvate kinase-R, in healthy adults: a randomized, placebo-controlled, double-blind, first-in-human phase 1 trial
.
Clin Pharm Drug Dev
.
2022
;
11
(
5
):
654
-
665
.
doi:10.1002/cpdd.1058
.
38.
Perkins
A
,
Xu
X
,
Higgs
DR
, et al.
Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants
.
Blood
.
2016
;
127
(
15
):
1856
-
1862
.
doi:10.1182/blood-2016-01-694331
.
You do not currently have access to this content.