Recently, considerable interest has arisen as to use cord blood (CB) as a source of hematopoietic stem cells for allogenic transplantation when bone marrow (BM) from a familial HLA-matched donor is not available. Because human cytomegalovirus (HCMV) has been shown to inhibit the proliferation of BM progenitors in vitro, it was important to examine whether similar effect could be observed in HCMV-infected CB cells. Therefore, the effect of HCMV challenge on the proliferation of myeloid progenitors from BM and CB was compared using both mononuclear cells (MNC) and purified CD34+ cells. A clinical isolate of HCMV inhibited the colony formation of myeloid BM progenitors responsive to granulocyte-macrophage colony-stimulating factor (CSF), granulocyte-CSF, macrophage-CSF, interleukin-3 (IL-3) and the combination of IL-3 and stem cell factor (SCF). In contrast, colony growth of CB progenitors was not affected. In addition, HCMV inhibited directly the growth of purified BM CD34+ cells responsive to IL-3 and SCF in single cell assay by 40%, wheras the growth of CD34+ progenitors obtained from CB was not suppressed. The HCMV lower matrix structural protein pp65 and HCMV DNA were detected in both CB and BM CD34+ cells after in vitro challenge. However, neither immediate early (IE)-mRNA nor IE proteins were observed in infected cells. Cell cyclus examination of BM and CB CD34+ cells revealed that 25.7% of BM progenitors were in S + G2/ M phase wheras only 10.7% of the CB progenitors. Thus, a clinical isolate of HCMV directly inhibited the proliferation of myeloid BM progenitors in vitro wheras CB progenitors were not affected. This difference in the susceptibility of CB and BM cells to HCMV may partly be caused by the slow cycling rate of naive CB progenitors compared to BM progenitors at the time of infection.

This content is only available as a PDF.
Sign in via your Institution