The use of solvent/detergent mixtures and various forms of heat treatment to inactivate viruses has become widespread in the preparation of blood derivatives. Because viruses that lack lipid envelopes and/or are heat resistant, eg, hepatitis A virus (HAV) or parvovirus B19 may be present, the use of two methods of virus elimination that operate by different mechanisms has been advocated. We now report on short wavelength ultraviolet light (UVC) irradiation for virus inactivation and enhancement of its compatibility with proteins by quenchers of reactive oxygen species (ROS). Treatment of an antihemophilic factor (AHF) concentrate or whole plasma with 0.1 J/cm2 inactivated 10(5) to > or = 10(6) infectious doses (ID) of encephalomyocarditis virus (EMCV), HAV, bacteriophage M13, vesicular stomatitis virus (VSV), and porcine parvovirus. However, the recovery of factor VIII was 30% or lower on treatment of an AHF concentrate and 60% on treatment of plasma. Factor VIII recovery could be increased with little or no effect on virus kill by addition of rutin, a flavonoid known to quench both type I and type II ROS. On treatment of plasma in the presence of rutin, the recovery of several other coagulation factors was also enhanced by rutin addition and typically exceeded 75%. Electrophoretic analysis of treated AHF concentrate confirmed the advantage of rutin presence; UVC irradiation of plasma did not cause discernible changes in electrophoretic banding patterns, even in the absence of rutin. We conclude that addition of UVC treatment to existing processes used in the manufacture of blood derivatives will provide an added margin of safety, especially for nonenveloped or heat-stable viruses.

This content is only available as a PDF.
Sign in via your Institution