To investigate the feasibility of peripheral blood CD34+ cell selection and to analyze CD34+ cell-mediated engraftment after high-dose chemotherapy, we performed a phase I/II trial in 21 patients with advanced malignancies. The rationale for the selection of CD34+ cells from peripheral blood progenitor cell (PBPC) collections is based on the observation that contaminating tumor cells can be depleted approximately 3 logs using this procedure. CD34+ cells from chemotherapy+granulocyte colony-stimulating factor-mobilized PBPCs were positively selected with an avidin-biotin immunoadsorption column (CEPRATE SC system). One leukapheresis product with a median number of 2.8 x 10(6) CD34+ cells/kg was labeled with a biotinylated anti-CD34 monoclonal antibody and subsequently processed over the column. The yield of selected CD34+ cells was 73% +/- 24.6%. The purity of the CD34+ cell fraction was 61.4% +/- 19.7%. CD34+ cells were shown to represent predominantly committed progenitors coexpressing CD33, CD38, and HLA-DR molecules (lin+). They gave rise to myeloid as well as erythroid and multilineage colonies in vitro. In addition, positively selected CD34+ cells also comprised early hematopoietic progenitor cells, as shown by the presence of CD34+/lin- cells. Transfusion of positively selected CD34+ cells (2.5 x 10(6) CD34+/kg; range, 0.45 to 5.1) after high-dose VP16 (1,500 mg/m2), ifosfamide (12 g/m2), carboplatin (750 mg/m2), and epirubicin (150 mg/m2) (VIC-E) in 15 patients resulted in a rapid and stable engraftment of hematopoiesis without any adverse events. As compared with 13 historical control patients reconstituted with a comparable number of unseparated PBPCs, time to neutrophil and platelet recovery was identical in both groups (absolute neutrophil count > 500/microL, day + 12; platelet count > 50,000/microL, day + 15). These data indicate that autologous peripheral blood CD34+ cells and unseparated PBPCs mediate identical reconstitution of hematopoiesis after high-dose VIC-E chemotherapy. Because positive selection of CD34+ cells from mobilized blood results in a median 403-fold depletion of T cells, allogeneic CD34+ cells from mobilized blood should be investigated as an alternative to bone marrow cells for allotransplantation.

This content is only available as a PDF.
Sign in via your Institution