The use of recombinant adeno-associated virus (rAAV) vectors provides a new strategy to investigate the role of specific regulatory elements and trans-acting factors in globin gene expression. We linked hypersensitivity site 2 (HS2) from the locus control region (LCR) to a A gamma-globin gene (A gamma*) mutationally marked to allow its transcript to be distinguished from endogenous gamma-globin mRNA. The vector also contains the phosphotransferase gene that confers resistance to neomycin (NeoR). HS2 region mutations within the NF-E2 motifs prevented NF-E2 binding while preserving AP-1 binding. Another set in the GATA-1 motif prevented binding of the factor. Several NeoR K562 clones containing a single unrearranged RAAV genome with the A gamma* gene linked to the native HS2 core fragment (WT), mutant NF-E2 HS2 (mut-NFE2), mutant GATA-1 HS2 (mut-GATA1), or no HS [(-)HS] were identified. In uninduced K562 cells, mut-NFE2 clones expressed A gamma* mRNA at the same level as the WT clones, compared with a lack of A gamma* signal in the (-)HS2 clones. However, hemin induction of mut- NFE2 clones did not result in an increase in the A gamma* signal above the level seen in uninduced cells. Mut-GATA1 clones expressed the A gamma* mRNA at the same level as WT clones in both uninduced and induced cells. Thus, GATA-1 binding to this site does not appear to be required for the enhancing function of HS2 in this context. This single- copy rAAV transduction model is useful for evaluating the effects of specific mutations in regulatory elements on the transcription of linked genes.

This content is only available as a PDF.
Sign in via your Institution