Agents that interfere with cellular iron (Fe) incorporation inhibit tumor cell proliferation, including metals that bind to transferrin (Tf) such as gallium (Ga) or indium (In) and Fe chelators such as desferrioxamine (DFO). Ga nitrate is effective in the treatment of metastatic bladder cancer and these patients exhibit evidence for interference with Fe metabolism. We show here that bladder cancer cell proliferation in vitro is dependent on Tf-Fe. Concentrations of DFO that can be readily achieved in vivo inhibit cellular proliferation even in the presence of physiologic concentrations of Tf-Fe. Inhibition of proliferation by Tf-Ga is associated with decreased cellular Fe incorporation. However, when a physiologic concentration of Tf-Fe is added to an equimolar concentration of Tf-Ga, significant Fe incorporation is evident despite inhibition of proliferation. Thus, besides interference with Fe incorporation, Ga may also interfere with intracellular Fe distribution and/or directly inhibit an Fe- (or non-Fe- ) requiring process necessary for cellular proliferation. DFO followed sequentially by Tf-Ga results in marked potentiation of inhibition of proliferation. The effects of this combination appear to be related to both interference with Fe metabolism and increased Ga uptake. This sequential combination may be useful in the treatment of bladder cancer.

This content is only available as a PDF.
Sign in via your Institution