Basic fibroblast growth factor (bFGF), a multifunctional growth factor produced by bone marrow stromal cells, is known to be a potent modulator of hematopoiesis. Because bFGF is present in both human megakaryocytes (MKs) and platelets, we have hypothesized that this growth factor might affect human megakaryocytopoiesis. To test this hypothesis, either low density bone marrow (BM) cells (LDBM), a human BM subpopulation (CD34+ DR+) enriched for the colony-forming unit megakaryocyte (CFU-MK) or a BM subpopulation (CD34+ DR-) enriched for the more primitive burst-forming unit megakaryocyte (BFU-MK) were assayed in the presence of this growth factor. The effect of bFGF on MK colony formation differed according to the cell population assayed. bFGF alone had on MK colony-stimulating activity (MK-CSA) when either CD34+ DR+ or CD34+ DR- BM cells were cloned, but exhibited MK-CSA equivalent to that of interleukin-3 (IL-3) when LDBM cells were used as the target cell population. The MK-CSA of bFGF was inhibited by the addition of neutralizing antisera to either IL-3 and/or granulocyte- macrophage colony-stimulating factor (GM-CSF) but not IL-6. The addition of excess amounts of either IL-3 or GM-CSF to cultures containing bFGF plus anti-IL-3 or anti-GM-CSF reversed the inhibition by the corresponding antisera. The addition of bFGF and IL-3 to assays containing CD34+ DR+ or CD34+ DR- cells increased the size of both CFU- MK- and BFU-MK-derived colonies, respectively, when compared with assays containing IL-3 alone. This increase in MK colony size mediated by bFGF was not affected by addition of either an anti-GM-CSF or anti- IL-6 neutralizing antisera. When LDBM cells were assayed, bFGF alone increased CFU-MK-derived colony size when compared with control values. However, this potentiation of MK colony size by bFGF could be reversed by the addition of either anti-IL-3 or anti-GM-CSF but not anti-IL-6 antisera. In addition, the effects of bFGF and IL-3 on the size of MK colonies cloned from LDBM were not additive. These results suggest that bFGF affects human megakaryocytopoiesis by directly promoting MK progenitor cell proliferation and stimulating BM accessory cells to release growth factor(s) with MK-CSA, such as IL-3 and GM-CSF. We conclude that bFGF, likely produced by cellular components of the BM microenvironment, plays an important role in the control of human megakaryocytopoiesis.

This content is only available as a PDF.
Sign in via your Institution