Murine erythroleukemia cells (MELC) have served as a model for examining the regulation of erythroid differentiation. However, the role of Ca2+ in the signal transduction pathways regulating differentiation remains unclear. To begin to address this uncertainty we have characterized the regulation of cytoplasmic Ca2+ and the possible role of calcium channels during induced differentiation in MELC. MELC can be induced to terminal differentiation using the polar/apolar compound hexamethylene bisacetamide (HMBA). We found that HMBA stimulated Ca2+ influx within 3 to 6 minutes and that Ca2+ entry was required but not sufficient for MELC growth and differentiation. Nifedipine (1 to 10 mumol/L), a calcium channel antagonist, blocked HMBA-induced Ca2+ influx and inhibited differentiation by approximately 60%. Depolarization of the MELC membrane did not induce Ca2+ influx and whole-cell patch-clamp recordings failed to detect a voltage-activated Ca2+ current, suggesting that MELC do not express detectable levels of a functional voltage-dependent calcium channel (VDCC). However, a cDNA probe encoding a portion of the alpha 1 subunit of the cardiac VDCC detected an approximately 8-kb mRNA on Northern blots of total MELC RNA. Taken together, these data show that Ca2+ influx is an early event associated with HMBA-induced differentiation in MELC, blockade of this calcium influx inhibits induced differentiation, and a voltage- insensitive dihydropyridine-sensitive calcium channel may be involved in Ca2+ influx in MELC.

This content is only available as a PDF.
Sign in via your Institution