Platelets undergo biochemical and morphologic changes when stimulated that greatly alter their function and contribute to their role in thrombosis and hemostasis. We recently identified and cloned the cDNA for a platelet surface glycoprotein expressed on activated, not resting cells. We found that this protein, lysome-associated membrane protein-1 (LAMP-1), is an integral membrane protein of the lysosome that translocated to the surface membrane when platelets were stimulated by a strong agonist. We now show with immunofluorescence flow cytometry that LAMP-2, a lysosomal membrane protein that shares approximately 30% homology with LAMP-1, is also expressed preferentially on the surface of activated platelets. Equilibrium binding studies with 125I-anti-LAMP- 2 IgG showed approximately 1,100 binding sites per thrombin-stimulated platelet and less than 50 per resting platelet. Sucrose gradient ultracentrifugation fractionation of resting platelet sonicates showed that LAMP-2 colocalized with LAMP-1 and with lysosomal enzymes, and not with thrombospondin or serotonin, which are markers of the two other platelet granule compartments, alpha-granules and dense granules. LAMP- 2 surface expression was minimal in response to platelet stimulation by weak agonists such as epinephrine and ADP. These data show that LAMP-2, like LAMP-1, translocates from the lysosomal membrane compartment to the surface membrane when platelets are activated. Regulated surface expression of these heavily glycosylated proteins may play a role in the adhesive, prothrombotic phenotype of these cells.

This content is only available as a PDF.
Sign in via your Institution