Seventy-one patients with hematologic malignancies received bone marrow from a histocompatible sibling (n = 48) or a partially matched relative (n = 23) that had been depleted of CD5+ T cells with either an anti-CD5 mooclonal antibody (MoAb) plus complement (anti-Leu1 + C) or an anti- CD5 MoAb conjugated to ricin A chain (ST1 immunotoxin [ST1-IT]). These patients received intensive chemoradiotherapy consisting of cytosine arabinoside, cyclophosphamide, and fractionated total body irradiation. Both anti-Leu1 + C and ST1-IT ex vivo treatments effectively depleted bone marrow of T cells (97% and 95%, respectively). Overall, primary and late graft failure each occurred in 4% of evaluable patients. The diagnosis of myelodysplasia was a significant risk factor for graft failure (P less than .001), and if myelodysplastic patients were excluded, there were no graft failures in major histocompatibility complex (MHC)-matched patients and 2 of 23 (8.7%) in MHC-mismatched patients. The actuarial risk of grade 2 to 4 acute graft-versus-host disease (GVHD) was 23% in MHC-matched patients and 50% in MHC- mismatched patients. In MHC-matched patients, acute GVHD tended to be mild and treatable with corticosteroids. Chronic GVHD was observed in 6 of 36 (17%) MHC-matched patients and none of 11 MHC-mismatched patients. There were no deaths attributable to GVHD in the MHC-matched group. Epstein-Barr virus-associated lymphoproliferative disorders were observed in 3 of 23 MHC-mismatched patients. The actuarial event-free survival was 38% in the MHC-matched patients versus 21% in the MHC- mismatched patients. However, if outcome is analyzed by risk of relapse, low-risk patients had a 62% actuarial survival compared with 11% in high-risk patients. These data indicate that the use of anti-CD5 MoAbs can effectively control GVHD in histocompatible patients, and that additional strategies are required in MHC-mismatched and high-risk patients.

This content is only available as a PDF.
Sign in via your Institution