In an effort to identify human proteins that bind to the TATAA box, a lambda gt-11 expression library was screened with a radiolabeled DNA probe containing 12 copies of the TATAA sequence. A cDNA encoding a specific TATAA binding protein was isolated and found to contain a homeobox domain identical at 59 of 60 residues to the Drosophila Antennapedia (Antp) homeodomain, as well as another conserved motif found in homeotic genes, the homeo-specific pentapeptide. Although this and other Antp-like homeobox proteins have been described previously in neuronal cells and fibroblasts, we report the expression of this gene in lymphoid cells. This cDNA, isolated from a B-cell library, hybridizes to a 1.6-kb messenger RNA in several T- and B-cell lines, and the expected protein was identified in Jurkat T-lymphoid cells by Western blot analysis. The DNA binding specificity of this human Antp clone was analyzed using single-base mutations of the TATAA sequence. The first thymidine, as well as the last three bases (TAA), were important for homeobox binding. Finally, the function of the highly conserved homeospecific pentapeptide protein region was investigated in both the human and Drosophila Antp proteins. The homeospecific pentapeptide region was not required for DNA binding, and Drosophila Antp proteins mutated in the pentapeptide region were able to transactivate the Ubx promoter in Schneider L2 cells, in contrast to a homeodomain mutation, suggesting an alternative function for the homeospecific pentapeptide in homeotic genes. Because the human Antp TATAA binding protein is expressed in both lymphoid and non-lymphoid cells, we suggest that this homeobox gene has evolved a more general transcriptional regulatory function in higher eukaryotic cells.

This content is only available as a PDF.
Sign in via your Institution